The Law of Large Numbers: Revisited
Recall the weak Law of Large Numbers: (Lee 12.2)
Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be uncorrelated L^{2} random variables

$$
\operatorname{Cov}\left(x_{n}, x_{m}\right)=0 . \quad \forall n \neq m
$$

and suppose that $\mathbb{E}\left[X_{n}\right]=\alpha \quad \forall n, \mathbb{E}\left[X_{n}^{2}\right]=s^{2} \quad \forall n$
Set $S_{n}=X_{1}+\cdots+X_{n}$. Then

$$
\begin{aligned}
& +X_{n} \text {. Then } \\
& \frac{S_{n}}{n} \rightarrow \mathbb{p} \alpha \text {. In fact } \mathbb{P}\left(\left|\frac{S_{n}}{n}-\alpha\right|>\varepsilon\right) \leqslant \frac{s^{2}}{\varepsilon^{2}} \cdot \frac{1}{n} \text {. }
\end{aligned}
$$

The proof was a simple application of Chebyshev's inequality
There are at least two ways we could improve the result:
C1. Weaken the hypothesis that $X_{n} \in L^{2} . \quad X_{n} \in L^{1}$ should suffice.
2. Strengthen the convergence from $\rightarrow p$ ass.
cutoff argument

Cut-Offs
Let X be any random variable.
Let $M<\infty$. Then
$X \|_{|x| \leqslant M}$ is bounded hence $m L^{p} \forall p \geq 1$
\uparrow
$\sigma(x)$-measurable

$$
\left.x\right|_{|x| \leq M}=f_{M}(x)
$$

$$
\left.\mathbb{E}[\mid x\rfloor_{|x| \leq\left. M\right|^{p}}\right]^{1} \leq M^{p}<\infty .
$$

$$
f_{M}(x)=x^{1}| | x \mid \leqslant M
$$

Bedel fr.

Only trouble: $\operatorname{Cov}(X, Y)=0 \nRightarrow \operatorname{Cov}\left(X\left\|_{|X| \leqslant M}, Y\right\|_{|Y| S M}\right)=0$.
Solution: trade up. Replace the weak uncorrelated assumption with a stronger (and natural) independence assumption.
$\left\{X_{n}\right\}_{n=1}^{\infty}$ indsp. $\Leftrightarrow\left\{\sigma\left(X_{n}\right)\right\}_{n=1}^{\infty}$ indep. $\Rightarrow\left\{X_{n} \|_{\left|X_{n}\right|} \mid \leqslant M_{n}\right\}$ indep.

We can replace X_{n} with $X_{n} \|_{\left|X_{n}\right|} \leqslant M_{n}$ at the expense of assuming full independence.
The idea will then be to "remove" the cutoff
This approach does work (with some work!) and we're going to follow it to prove:
Theorem: (Kolmegorov's Strong Law of Large Numbers)
Let $\left\{X_{n}\right\}_{n=1}^{\infty}$ be ind L^{1} random variables with $\mathbb{E}\left[X_{n}\right]=\alpha$.
Let $S_{n}=x_{1}+\cdots+x_{n}$. Then

$$
\frac{S_{n}}{n} \rightarrow \alpha \text { ass. }
$$

If $X_{n} \notin L^{1}$ but $X_{n}^{-} \in L^{\perp}$ (so " $\mathbb{E}\left[X_{n}\right]=+\infty$ "), then $\frac{S_{n}}{n} \rightarrow+\infty$ ass. pf. Fix $M<\infty$, let $x_{n}^{M}=x_{n} \wedge M$ ㅇy $\operatorname{SLL} N_{j} \frac{S_{n}^{M}}{n}=\frac{x^{n}+\cdots x_{n}^{M}}{n} \rightarrow \mathbb{E}\left[X_{j}^{M}\right]$ as.

$$
\therefore \frac{S_{n}}{n} \geq \frac{S_{n}^{M}}{n} \therefore \lim _{n \rightarrow \infty} f \leqslant \frac{S_{n}}{n} \geq \operatorname{limin}_{n \rightarrow \infty} \frac{\frac{S}{n}_{H}^{n}}{n}=\mathbb{E}[x, \wedge M]=\mathbb{E}\left[\left(x_{1} \wedge M\right)_{+}\right]-\mathbb{E}[(x, N M)]
$$

Tail Equivalence
Def Two sequences $\left\{X_{n}\right\}_{n=1}^{\infty},\left\{X_{n}^{\prime}\right\}_{n=1}^{\infty}$ on a common probability space are called tail equivalent if

$$
\sum_{n=1}^{\infty} \mathbb{P}\left(X_{n} \neq X_{n}^{\prime}\right)<\infty
$$

By the Bersl-Cantelli Lemma (I), setting $A_{n}=\left\{X_{n} \neq X_{n}^{\prime}\right\}$, we have $\mathbb{P}\left(A_{n} i_{0}\right)=0$
Ie. \exists null set N s.t. $\forall \omega \in N^{c}$,
$x_{n}(\omega)=x_{n}^{\prime}(\omega) \quad \forall$ but falsely merry n.
Cor: If $\left\{X_{n}\right\}_{n=1}^{\infty},\left\{X_{n}^{\prime}\right\}_{n=1}^{\infty}$ are rail equivalent, and $b_{n} \uparrow \infty$, if $\exists r . v . X$ s.t.
$\lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{j=1}^{n} X_{j}^{\prime}=X$ as., then $\lim _{n \rightarrow \infty} \frac{1}{b_{n}} \sum_{j=1}^{n} X_{j}=X$ ass.

$$
\lim _{n \rightarrow \infty} \frac{1}{5_{n}} \sum_{j=M}^{n} x_{j}=x_{j}^{\prime}
$$

for any M.

Wed like to find a sequence of cut-offs $x_{n}^{\prime}=X_{n} \|_{\left|x_{n}\right| \leqslant M_{n}}$ so that $\left\{x_{n}\right\}_{n=1}^{\infty},\left\{X_{n}^{\prime}\right\}_{n=1}^{\infty}$ are tail equivalent. To that end, we have:
Lemma: If $x \in L^{1}$ and $\varepsilon>0$, then
Markov:

$$
\sum_{n=1}^{\infty} \mathbb{P}(|x| \geq n \varepsilon) \leqslant \frac{1}{\varepsilon} \mathbb{E}[|x|]
$$

Pf.

$$
\begin{gathered}
x \mapsto \sum_{n=1}^{\infty} \mathbb{1}_{[n, \infty)}(x) \leqslant x \\
\therefore \mathbb{E}\left(\sum_{n=1}^{\infty} \mathbb{1}_{[n, \infty)}\left(\frac{|x|}{\varepsilon}\right)\right) \leqslant \mathbb{E}\left(\frac{|x|}{\varepsilon}\right) \\
\mathbb{E}\left(\mathbb{1}_{\{|x| \geq n \varepsilon\}}\right)
\end{gathered}
$$

Cor If $\left\{X_{n}\right\}_{n=2}^{\infty}$ are (i)id and L^{1}, they are tail equivalent to $X_{n}^{\prime}=X_{n} \cup\left|x_{n}\right| \leqslant n$.

$$
\text { Pf. } \sum_{n=1}^{\infty} \mathbb{P}\left(x_{n}^{\prime} \neq x_{n}\right)=\sum_{n=1}^{n} \mathbb{P}\left(\left|x_{n}\right|>n\right)=\sum_{n=1}^{\infty} P\left(\left|x_{1}\right|>n\right) \leqslant \mathbb{E}\left[\left|x_{1}\right|\right]<\infty \text {. }
$$

Thus, in order to prove the SLLN, it suffices to prove:
If $\left\{X_{n}\right\}_{n=1}^{\infty}$ is an ind sequence of L^{\prime} random
variables with $\mathbb{E}\left[X_{n}\right]=\alpha$, and

$$
S_{n}^{\prime}=\sum_{k=1}^{n} x_{k} \|_{\left|x_{k}\right| \leqslant k}
$$

then $\frac{S_{n}^{\prime}}{n} \rightarrow \alpha$ ass.
Advantages: bonded $\therefore L^{2}$
Disadvantages: X_{n}^{\prime} not id. dst.

