Regular Borel Measures
If Ω is a (locally compact Hausdorff) topological space, a measure μ on $B(\Omega)$ is called

- onter-regular if $\mu(B)=\inf \{\mu(V): B \leqq V, V$ open $\}$
- inner-regular if $\mu(B)=\sup \{\mu(K): K \leqslant B, K$ compact $\}$
/ We shewed (Lecture 4.2) that the outer measure of a Borel premeasure is outer regular on $\overline{B(\Omega)}$ - the Lebesgue σ-field.
Definition: A Borel measure μ is a Radon measure if it is locally finite: $\mu(k)<\infty \quad \forall k \leqslant \Omega$ compact, and it is both outer-and inner-regular.
Theorem: [13.17] All finite (egg. probability) Bore measures on \mathbb{R}^{d} are Radon measures.

Pf. Define $F:=\left\{B \in D B\left(\mathbb{R}^{d}\right): \forall \varepsilon>0 \exists\right.$ open V, closed C s.t. $\left.C \subseteq B \subseteq V, \mu(V \backslash C)<\varepsilon\right\}$. We will show that $F=B\left(\mathbb{R}^{d}\right)$. This suffices:

$$
\begin{aligned}
& C S B \subseteq V \Rightarrow V B \subseteq V \backslash C \\
& \Downarrow \begin{array}{l}
\|
\end{array} V \backslash C
\end{aligned}
$$

We will show that \mathcal{F} is a σ-field containing all closed sets.

1. F contains all closed sets: Let C be closed. Fix $\varepsilon>0$, let $C_{\varepsilon}=\bigcup_{x \in C} B(x, \varepsilon)$.
2. \mathcal{F} is an algebra. $\phi \in \mathcal{F}$

If $A \in F$, find $C \subseteq A \subseteq V$ with $\mu(V \backslash C)<\varepsilon$.

- If $A_{1} A_{2} \in f$, find $C_{j} \subseteq A_{j} \subseteq V_{j}$ with $\mu\left(V_{j} \mid C_{j}\right)<\varepsilon / 2$.

3. F is closed under countable disjoint union. $A_{n} \in \mathcal{F}$, find $C_{n} \subseteq A_{n} \subseteq V_{n}$ Fix $N \in \mathbb{N}$, let $D_{N}=C_{1} \cup \cdots \cup C_{N} \quad$ disjoint with $\mu\left(V_{n} \backslash C_{n}\right)<\varepsilon / 2^{n+1}$

$$
\left.V=\bigcup_{n=1}^{\infty} V_{n} \quad\right\} \quad D_{N} \leq \bigcup_{n=1}^{\infty} A_{n} \leq V
$$

Recall the co cube $Q=[0,1]^{N}$, equipped with the topology of pointwise convergence. we showed that Q is compact, \& therefore has the finite intersection property.
Theorem: (Kolmogerov)
Let ν_{n} be a probability measure on $\left(\left[0,11^{n}, B\left(\left[0_{0} 11^{n}\right)\right)\right.\right.$, and suppose these measures satisfy the following consistency condition:

$$
V_{n+1}(B \times[0,1])=V_{n}(B) \quad \forall B \in P B\left([0,1]^{n}\right)
$$

Then there exists a unique probability measure \mathbb{P} an $(Q, B(Q))$ sit,

$$
\mathbb{P}(B \times Q)=V_{n}(B) \quad \forall B \in B B\left([0,1]^{n}\right) .
$$

If. Set $B_{n}=\left\{B \times Q: B \in B\left([0,1]^{n}\right)\right\}$

$$
\begin{array}{r}
=\sigma\left\{\pi_{1}, \cdots, \pi_{n}\right\} \text { where } \pi_{k}: Q \rightarrow[0,1] \\
\\
\pi_{k}\left(\left(x_{n}\right)_{n}^{\infty}=1\right)=x_{k} .
\end{array}
$$

Let $A=\bigcup_{n=1} B_{n}$. Thus A is an algebra. Also, if $C \subseteq Q$ is closed, let $B_{n}=\pi_{1} \times-\times \pi_{n}(C) \subseteq[0.1]^{n}$, closed. Then $C=\bigcap_{n=2}^{\sim}\left(\pi_{1}, \cdots \times \pi_{n}\right)^{-1}\left(B_{n}\right) \Rightarrow C \in \sigma\left\{\pi_{n}: n \in N\right\}=\sigma(A)$.

$$
\Rightarrow B(Q)=\sigma(A) \text {. }
$$

Now, define: $P(A \times Q)=V_{n}(A) \quad \forall A \in A$ ((A)
Using the consistency condition, we see that
P is a finitely-additive measure on A. [HW]
Thus, it suffices to show that P is a premeasure on A
Then it extends to a measure \bar{P} on \bar{A}. Set $\mathbb{P}:=\bar{P} \mid \bar{\sigma}(A)=B(Q)$.
Then $(*)$ will hold for all $A \in \sigma(A)$ (eg. by the M(T)

Thus, suffices to show $P\left(A_{n}\right) \downarrow 0$ whenever $A_{n} \downarrow \phi, A_{n} \in A$.
Ie: we will show that, if $B_{n} \in A, B_{n} \downarrow$, and $\inf _{n} P\left(B_{n}\right)=\varepsilon>0$,
Claim Suffices to assume $B_{n} \in B_{n}$. then $B:=\cap_{n} B_{n} \neq \phi$.

So, $B_{n} \in B_{n}, \therefore B_{n}=B_{n}^{\prime} \times Q$. By regularity, find compact $K_{n}^{\prime} \subseteq B_{n}^{\prime}$ s.t.

$$
\left.\left.\therefore K_{n}:=K_{n}^{\prime} \times Q \Rightarrow P\left(B_{n} \backslash K_{n}\right)<\varepsilon / B_{n}^{\prime} \mid K_{n}^{\prime}\right)<\varepsilon / 2^{n+1}\right)
$$

\therefore if $B_{n} \in B_{n}, \exists K_{n} \in B_{n} \quad k_{n}{ }^{2} k_{n}^{\prime} \times Q$ st. $P\left(B_{n} \backslash K_{n}\right)<\frac{q}{2^{n+1}}$.
Thus, $P\left(B_{n} \backslash \bigcap_{i=1}^{n} K_{i}\right)=P\left(\bigcup_{i=1}^{n}\left(B_{n} \backslash K_{i}\right)\right) \leqslant \sum_{i=1}^{n} P\left(B_{n} \mid K_{i}\right) \leqslant \sum_{i=1}^{n} P\left(B_{i} \mid K_{i}\right)<\sum_{i=1}^{n} \frac{\varepsilon}{2^{2+1}}<\frac{\xi}{2}$.

But we assumed inf $P\left(B_{n}\right)=\varepsilon>0$. Thus

$$
P\left(\bigcap_{i=1}^{n} K_{i}\right)
$$

In particular, we conclude that $\bigcap_{i=1}^{n} k_{i}$

Cor: Consider $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$
$\pi_{n}: \mathbb{R}^{N} \rightarrow \mathbb{R}$ the projection $\pi_{n}\left(\left(x_{k}\right)_{k=1}^{\infty}\right)=x_{n}$

$$
B_{n}:=\sigma\left\{\pi_{k}: k \leqslant n\right\}, \quad B:=\sigma\left(B_{n}: n \in \mathbb{N}\right)
$$

Let ν_{n} be Bore probability measures on \mathbb{R}^{n} sit.

$$
V_{n+1}(B \times \mathbb{R})=V_{n}(B) \quad \forall B \in B\left(\mathbb{R}^{n}\right)
$$

Then \exists ! probability measure \mathbb{P} on $\left(\mathbb{R}^{N}, B\right)$ st.

$$
\mathbb{P}\left(B \times \mathbb{R}^{N}\right)=\nu_{n}(B) \quad \forall B \in \mathbb{B}\left(\mathbb{R}^{n}\right)
$$

Pf. Fix a homeomorphism $\alpha: \mathbb{R} \rightarrow(0,1)$
$\therefore \alpha^{n}: \mathbb{R}^{n} \rightarrow(0,1)^{n}$ is a homeomorphism.
Thus $B \in B\left(\mathbb{R}^{n}\right) \Leftrightarrow A=\alpha^{n}(B) \in B\left((0,1)^{n}\right) \leq B\left([0,1]^{n}\right)$
Set $\tilde{\nu}_{n}(A):=$

$$
\tilde{V}_{n+1}(A \times[0,1])=
$$

Cor: Let μ_{n} be Borel probability measures on \mathbb{R}.
There exists a probability space (Ω, F, \mathbb{P}) and a sequence $X_{n}:(\Omega, f, P) \rightarrow(\mathbb{R}, B(\mathbb{R}))$ of independent random variables, sit.

$$
\mu_{x_{n}}=\mu_{n} \quad \forall n \in \mathbb{N} \text {. }
$$

Pf. Take $\Omega=\mathbb{R}^{N}, \mathcal{F}=\sigma\left\{\pi_{n}: n \in N\right\}$. Define $v_{n}=\mu_{1} \otimes \cdots \mu_{n}$. Then

$$
V_{n+1}(B \times \mathbb{R})
$$

\therefore By Kolmogorov, $\exists \mathbb{P} \in \operatorname{Prob}(\mathcal{F})$ s.t. $\mathbb{P}\left(B \times \mathbb{R}^{N}\right)=\nu_{n}(B) \quad \forall B \in Q B\left(\mathbb{R}^{n}\right)$
Claim: $X_{n}=$

