i i d Random Variables

 $M_{X_n} = M_n$

- A sequence {Xn3n=, of random variables
 - $X_{\eta}:(\Sigma,\mathcal{F},\mathbb{P}) \rightarrow (S,\mathcal{B}) = (\mathbb{R}^{d},\mathcal{B}(\mathbb{R}^{d}))$
- is called iid = independent and identically distributed if all the X_n are independent, and $\mu_{X_n} = \mu_{X_n}$. Then

 $\chi^*_{\Lambda} \stackrel{"}{\mathbb{P}} \quad \chi^*_{\Lambda} \stackrel{"}{\mathbb{P}}$

- But how do we know such things exist?
- In general, we would like to Construct sequences {Xninz, of independent vandom variables/vectors with any prescribed laws: {Mninz, on (S,B)
 - For finite sequences, this is easy, and instructive

Eg. Te construct d ind N(e,1) random variables, set $\Re(x) = (2\pi)^{-1/2} e^{-\chi^2/2}$, and $d\mu = \Re(d)$ on (IR, B(IR)). Then equip (Rd, B(Rd)) with P= uod B(IR) od $= (X_{1,-5}, X_d) \text{ with } X_n(x_{1,-7}, X_d) = x_n \text{ are i.i.d. } NG_1).$ Since Mx; has a density & wrt 2, $\Rightarrow P = \mu^{\otimes d} \text{ has density } \mathcal{X} \otimes \cdots \otimes \mathcal{Y} (x_{1}, \dots, x_{d}) = (2\pi)^{-1/2} C^{-1/2} C^{$ Lebesgui on Ra

Kolmegorov's Extension Theorem

We'd like to construct i.i.d. sequences by taking products. That means we need to be able to take infinite products of probability spaces.

Setup. Want a probability measure on Isay)

To take advantage of compactness results, we replace IR with Eq.1]

Q:= [0,1]". « We give it a topology Consistent with the above inclusions [0,1] ~ Q Def: a is given the topology of pointwise convergence: $x' = (x'_{m})_{n=0}^{\infty} x^{2}, ..., x' \in Q$ converge to $x \in Q$ iff

 $\chi'_n \rightarrow \chi_n \quad \forall n \in \mathbb{Q}$.

it has a convergent subsequence $(\chi^{m_k})_{k=1}^{\infty}$. Pf $\chi^{m_k}_{1} \in [0,1]^{L}$ Compade has a Gnv. subseq.

))

Cor: (Finite Intersection Property) If $K_m \leq Q$ are closed subsets s,t, $\bigcap_{i=1}^{\infty} K_i \neq Q$ $\forall m \in \mathbb{N}$, then $\bigcap_{i=1}^{\infty} K_i \neq Q$.

Theorem: (Kolmogerov)

Let vn be a probability measure on (Eo, 11", B(Eo, 11")), and suppose these measures satisfy the following consistency condition:

$\mathcal{V}_{n+1}(\mathcal{B}\times [0,1]) = \mathcal{V}_n(\mathcal{B}) \quad \forall \mathcal{B} \in \mathcal{B}([0,1]^n)$

Then there exists a unique probability measure P on (Q, B(Q)) s.t.

 $P(B \times Q) = V_n(B) \quad \forall B \in \mathcal{B}(\mathcal{L}_0, \mathbb{I}^n)$

Once we prove this, it will generalize almost instantly from CO, 1 to R (cend then to R^d) IIS $(P, 1) \in B[O, 1]$