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Kolmogorov 's Extension Theorem
we'd like to construct ii.d. sequences by
taking products .

That means we need
to be able to take infinite products of
probability spaces .
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Theorem :(Tychonaff )
Q is lsequentially ) compact .
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Theorem : ( Kolmogorov)
Let u n be a probability measure on do, it ,Bks NY) ,
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Once we prove this , it will generalize almost instantly
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