Conditioning
Let $(\Omega, \mathcal{J}, \mathbb{P})$ be a probability space, and $B \in f$ with $\mathbb{P}(B)>0$.

$$
\mathbb{P}(\cdot \mid B): \mathcal{F} \rightarrow[0,1], \mathbb{P}(A \mid B):=
$$

is another probability measure on (Ω, F).
It is conditional probability: $\mathbb{P}(A \mid B)$ is the "new" probability of event A, in the event that B has occurred.
Eg. Toss a fair coin twice.

$$
\Omega=\{H H, H T, T H, T T\}, \mathcal{F}=2^{\Omega}, \mathbb{P}(A)=\frac{\# A}{4} \text {. }
$$

$\mathbb{P}($ Second tors is $H \mid$ First loss is H)

Independence
Events $A, B \in \mathcal{F}$ are (statistically) independent if $\quad \mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)$.

More generally, if $e_{1}, e_{2} \subseteq \mathcal{F}$ are tho collections of events, we say they are independent if $\mathbb{P}\left(A_{1} \cap A_{2}\right)=\mathbb{P}\left(A_{1}\right) P\left(A_{2}\right) \quad \forall A_{1}, e_{1}, A_{2}, e_{2}$. It will be customary to apply this with $e_{j} \sigma$-fields; if 50 , we can recover the original definition by applying it to $C_{j}=\sigma\left\{A_{j}\right\}$ If A, B are independent, so are $\sigma(A), \sigma(B)$.

Independence of Many Collections of Events
What should it mean for $A, B C \in \mathcal{F}$ to be independent?
Maybe just pairwise independence?
Eg. Two fair coin tosses again.
$A=\{H H, H T\}$ "first toss is H "
$B=\{H H, T H\}$ "second los is H "
$C=\{H T, T H\}$ "the two tosses dent agree"

$$
\begin{aligned}
& \mathbb{P}(A \cap B)= \\
& \mathbb{P}(A \cap C)= \\
& \mathbb{P}(B \cap C)=
\end{aligned}
$$

$$
\mathbb{P}(A)=\mathbb{P}(B)=\mathbb{P}(C)=\frac{1}{2}
$$

$$
\therefore P(A) P(B)=\mathbb{R}(A) P\left(C=P(B) P(C)=\frac{1}{4}\right.
$$

But these should not be "independent", since A \& $B \Rightarrow \neg C$!

$$
\mathbb{P}(A \cap B \cap C)=
$$

Maybe we just want $\mathbb{P}(A \subset B \cap C)=\mathbb{P}(A) \mathbb{P}(B) \mathbb{P}(C)$?
Eg. Take any events A, B, and set $C=\phi$.
Def: $e_{1}, \ldots, e_{n} \subseteq F$ are independent it: $\forall I \subseteq[n]$

$$
\mathbb{P}\left(\bigcap_{i \in I} A_{i}\right)=\prod_{i \in I} \mathbb{P}\left(A_{i}\right), \quad \forall A_{i} \in C_{i}, i \in I \text {. }
$$

Observation: If e_{1}, \ldots, e_{n} are independent, so are $e_{1} \cup \Omega, \ldots, e_{n} \cup \Omega$. This makes the notation se much easier.

Lemme: If $e_{1}, \ldots, e_{n} \subseteq \mathcal{F}$ and $\Omega \in e_{j}$ for all $j \in[n]$ then

Independence and σ-Fields
We saw that events A, B being independent $\Rightarrow \sigma(A), \sigma(B)$ are independent.
This does not apply to collections. [HW] But it dos if the collections are closed under finite intersections.
Def: A collection $e \subseteq f$ is a π-system
if it is closed under finite intersections:

$$
A \beta \in E \Rightarrow A \in B \in C
$$

Theorem: [15.2] If $e_{1}, \ldots, e_{n} \subseteq F$ are independent ro-systems, then $\sigma\left(e_{1}\right), \ldots, \sigma\left(e_{n}\right)$ are independent.

Lemme: If $e \leqslant F$ is a $T 0$-system, and $\mu_{\nu} \nu$ are probability measures on \mathcal{F} sit. $\mu=\nu$ on e, then $\mu=\nu$ on $\sigma(e)$.

Pf.

Theorem: $[15.2]$ If $e_{1}, \ldots, e_{n} \subseteq \mathcal{F}$ are independent n-systems then $\sigma\left(e_{1}\right), \ldots, \sigma\left(e_{n}\right)$ are independent.
Pf.

Def: Let $\left\{e_{t}\right\}_{t \in T}$ be any collection of subsets of \mathcal{F}. Call them independent iff, for all finite subsets $J \subset T,\left\{e_{j}\right\}_{j \in J}$ is independent.

Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be an infinite sequence of independent events. Then

$$
\mathbb{P}\left(\bigcap_{n=1}^{\infty} A_{n}\right)=\prod_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)
$$

[HF]
Borel-Cantelli Lemma (II)
Let $\left\{A_{n}\right\}_{n=1}^{\infty}$ be independent events. If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$, then $\mathbb{P}\left(\left\{A_{n} i_{0}\right\}\right)=1$
Eg. $x_{n}{ }^{d} \operatorname{Bernoulli}\left(p_{n}\right)$ where $\sum_{n=1}^{\infty} p_{n}=\infty$ (egg. $p_{n}=\frac{1}{n}$).
If the events $\left\{X_{n}=1\right\}$ are all independent
(e.g. tossing a sequence of biased independent corms
with $\mathbb{P}($ Heads $\left.)=P_{n}\right)$, then $\mathbb{P}\left(X_{n}=1\right.$ for ∞-many $\left.n\right)=1$.

Borel-Cantelli Lemma (II)
Let $\left\{A_{n}\right\}_{n=1}^{n}$ be independent events. If $\sum_{n=1}^{\infty} \mathbb{P}\left(A_{n}\right)=\infty$, then $\mathbb{P}\left(\left\{A_{n} i_{0}\right\}\right)=1$.
Pf. $\left\{A_{n} i_{0}\right\}=\bigcap_{k=1}^{\infty} \bigcup_{n \geqslant k} A_{n}$

