Product Measure
Eg. $\quad B\left(\mathbb{R}^{d}\right)=\sigma\left\{\left(a_{1} b_{1}\right) \times\left(a_{2}, b_{2}\right) \times \cdots \times\left(a_{j}, b_{d}\right)=-\infty \leq a_{j} \leq b_{j} \leqslant \infty\right\}$

Def. Given two measurable spaces $\left(\Omega, F_{1}\right),\left(\Omega, F_{2}\right)$,

$$
\mathcal{F}_{1} \otimes \mathcal{F}_{2}:=
$$

By induction, larger products are

$$
\bigotimes_{j=1}^{d} f_{j}=
$$

Thus $B\left(\mathbb{R}^{d}\right)=\bigotimes_{j=1}^{d} B(\mathbb{R})$.
Let $\pi_{k}: \prod_{j=1}^{d} \Omega_{j} \rightarrow \Omega_{k}$ be the standard projection: $\pi_{k}\left(\omega_{j}, \omega_{k}, \omega_{d}\right)=\omega_{k}$.
Then $\bigotimes_{j=1}^{d} F_{j}=\sigma\left\{\pi_{k}: 1 \leqslant k \leqslant d\right\}$.

Lemmas: (Product Measurability)
Let $\left(\Omega ; \mathcal{F}_{j}\right) j \in J$ and (Υ, Ω) be measurable spaces.
Then $f: \Upsilon \rightarrow \prod_{j \in J} \Omega_{j}$ is $B / \bigotimes_{j \in J} \mathcal{J}_{j}$-measurable iff $\pi_{r} \circ f: \Upsilon \rightarrow \Omega_{k}$ is B / \tilde{F}_{k}^{J} - measurable $\forall k \in J$.
Pf. We use the fact that $\bigotimes_{j \in J} F_{j}=\sigma\left\{\pi_{j}: j \in J\right\}$.

$$
(\Rightarrow)
$$

(\Leftarrow)

Eg. Let $f_{j}: \Omega_{j} \rightarrow \mathbb{R}$ be measurable functions. Then

$$
\begin{aligned}
& f_{1} \otimes f_{2}: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R} \text { is defined by } \\
& \left(f_{1} \otimes f_{2}\right)\left(\omega_{1}, \omega_{2}\right):=
\end{aligned}
$$

It is $\mathcal{F}_{1} \otimes F_{2} 1 \otimes(\mathbb{R})$ - measurable.

We will use such "tensor product" functions frequently in our construction of product measure.
If $\left(\Omega_{1}, \mathcal{F}_{1}, \mu_{1}\right),\left(\Omega_{2}, \mathcal{F}_{2}, \mu_{2}\right)$ are measure spaces, wb want to construct a measure $\mu_{1} \otimes \mu_{2}$ an $\mathcal{F}_{1} \otimes \mathcal{F}_{2}$ satisfying

$$
\left(\mu_{1} \otimes \mu_{2}\right)\left(B_{1} \times B_{2}\right)=\mu_{1}\left(B_{1}\right) \mu_{2}\left(B_{2}\right) \text { for } B_{j} \in \mathcal{F}_{j}
$$

To really understand product measure, we need to figure ant how to de

Theerem: $[3.3]$ Let $\left(\Omega_{j} \mathcal{J}_{j}, \mu_{j}\right) \quad j=1,2$ be σ-fmite measure spaces. Let $f: \Omega_{1} \times \Omega_{2} \rightarrow[0, \infty)$ be a non-negative $\mathcal{F}_{1} \otimes \mathcal{F}_{2} / B(\mathbb{R})$-measurable function. Then:

1. (a) $\omega_{1} \mapsto f\left(w_{1}, \omega_{2}\right)$ is $\mathcal{F}_{1} / B(\mathbb{R})$-measwable $\forall \omega_{2} \in \Omega_{2}$
(b) $\omega_{2} \mapsto f\left(\omega_{1}, \omega_{2}\right)$ is $f_{2} / B(\mathbb{R})$-measwable $\forall \omega_{1} \in \Omega_{1}$
2. (a) $\omega_{1} \mapsto \int f\left(\omega_{1}, \omega_{2}\right) \mu_{2}\left(d \omega_{2}\right)$ is $\mathcal{F}_{1} / O B(\overline{\mathbb{R}})$-measwable
(b) $\omega_{2} \mapsto \int_{\Omega_{1}}^{\Omega_{2}} f_{1}\left(\omega_{2}\right) \mu_{1}\left(d w_{1}\right)$ is $F_{2} / B B(\overline{\mathbb{R}})$ - measwable
3. $\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f\left(w_{1}, w_{2}\right) \mu_{2}\left(d w_{2}\right)\right) \mu_{1}\left(d w_{1}\right)=\int_{\Omega_{2}}\left(\iint_{\Omega_{1}} f\left(w_{1}, w_{2}\right) \mu_{1}\left(d w_{1}\right)\right) \mu_{2}\left(d w_{2}\right)$

We'll prove this for μ_{1}, μ_{2} fmite measures; the extension to σ-finite is standorrel

Pf. Step 1. Verify that $1-3$ hold for $f=f_{1} \otimes f_{2}, f_{j} \in B\left(\Omega_{j}, F_{j}\right)$

1. (a) $\omega_{1} \mapsto f\left(\omega_{1}, v_{2}\right)$
(b)
2. (a) $\omega_{1} \mapsto \int_{\Omega_{2}} f\left(\omega_{1}, \omega_{2}\right) \mu_{2}\left(d w_{2}\right)$
(b)
3. $\int_{\Omega_{1}}\left(\iint_{\Omega_{2}} f\left(w_{1}, w_{2}\right) \mu_{2}\left(d w_{2}\right)\right) \mu_{1}\left(d w_{1}\right)$

Step 2. Let $\mathbb{H}=\left\{f \in \mathbb{B}\left(\Omega_{1} \times \Omega_{2}, \mathcal{F}, \otimes F_{2}\right): 1-3\right.$ hold $\}$
Let $\mathbb{M}=\mathbb{B}\left(\Omega_{1}, \mathcal{F}_{1}\right) \otimes \mathbb{B}\left(\Omega_{2}, \mathcal{F}_{2}\right)$

- M is a multiplicative system:

$$
\begin{aligned}
& \sigma(M)=\mathcal{F}_{1} \otimes F_{2} \\
& \cdot \mathbb{H} \supseteq \mathbb{M \cup \{ 1 \}}
\end{aligned}
$$

- H is closed under bounded convergence.

Thus, by Dynkin's Multiplicative Systems Theorem,

Step 3. Let $f \geqslant 0$ be $f \otimes F_{2} / B(\mathbb{R})$ - measurable. For $n \in \mathbb{N}$, set $f_{n}=\min \{f, n\}$.

Cor: There is a unique measure $\mu_{1} \otimes \mu_{2}$

$$
\text { an } F_{1} \otimes F_{2} \text { st. } \mu_{1} \otimes \mu_{2}\left(E_{1} \times E_{2}\right)=\mu_{1}\left(E_{1}\right) \mu_{2}\left(E_{2}\right)
$$

for all $E_{j} \in \mathcal{F}_{j}$, and it is given by

$$
\begin{aligned}
\left(\mu_{1} \otimes \mu_{2}\right)(E) & =\int_{\Omega_{1}}\left(\int_{\Omega_{2}} \mathbb{I}_{2}\left(w_{1} \omega_{2}\right) \mu_{2}\left(d w_{2}\right)\right) \mu_{1}\left(d w_{1}\right) \\
& =\int_{\Omega_{2}}\left(\int_{\Omega_{1}} \mathbb{I}_{E}\left(w_{1}, w_{2}\right) \mu_{1}\left(d w_{1}\right)\right) \mu_{2}\left(d w_{2}\right) \quad \forall E \in G_{1} \otimes f_{2}
\end{aligned}
$$

for $E \in \mathcal{F}_{1} \otimes F_{2}$.
Pf.

