1.1 Probability Motivation (I.3 in Driver)

Experiments"
"3 hoods, I tail"
Eg. Toss a fair coin N times. \{HHHT, HHTH, HTHLI, THHHN\}
(H) (H)

Eg. Throw a dart at a board of radius R.

Each experiment has an outcome The set of all possible atcomes is the sample space Ω.
"Probability" is a measwe of the likelihood of
a set of outcomes $=$ on event $E \in \Omega$.

Finite vs. Countable
Eg. Continue tossing a fair coir o until tails comes up. What is the probability that the total number of tosses was add?

$$
\begin{aligned}
\Omega & =\left\{\left(\omega, \omega_{2}, \omega_{3}, \cdots\right): \omega_{j} \in\left\{H_{,}, T\right\}\right\} \\
& =\left\{\omega: \mathbb{N} \rightarrow\left\{H_{j} T\right\}\right\} \\
E & =\{\omega(1)=T\} \cup\{\omega(1)=\omega(2)=H, \omega(B)=T\} \cup\{\omega(1)=\cdots=\omega(4)=H, \omega(5)=T\} \\
& =\bigsqcup_{j=0}^{\infty}\left\{\omega: N \rightarrow\left\{1 A_{j} T\right\}: \omega(1) \cdots=\omega(2 j)=H_{j}, \omega(2 j+1)=T\right\} \\
& =\bigcup_{j=0}^{\infty} E_{j} \quad \mathbb{P}\left(E_{j}\right)=\frac{1}{2^{2} j+1} \\
\mathbb{P}(E) & =\sum_{j=0}^{\infty} \mathbb{P}\left(E_{j}\right)=\sum_{j=0}^{\infty} \frac{1}{2^{2 j}+1}=\frac{2}{3} .
\end{aligned}
$$

Putative Definition
Let Ω be a sample space.
A probability measure on Ω is a function
$\mathbb{P}: 2^{8} \rightarrow[0,1]$
s.t. (1) $\mathbb{P}(\Omega)=1$
(2) If $\left\{E_{j}\right\}_{j=1}^{\infty}$ in 2^{Ω} are disjoint, then

$$
\begin{aligned}
& \mathbb{P}\left(\bigsqcup_{j=1}^{\infty} E_{j}\right)=\sum_{j=1}^{\infty} \mathbb{P}\left(E_{j}\right) \\
& E_{g} \cdot E \subseteq \Omega, E^{c}=\Omega \backslash E \quad \therefore \quad E \cup E^{c}=\Omega(1) \\
& \therefore \quad \mathbb{P}\left(E \cup E^{c}\right)=\mathbb{P}(\Omega)=1 \\
& \\
& \mathbb{P}(E)+\mathbb{P}\left(E^{c}\right) \quad \therefore \mathbb{P}\left(E^{c}\right)=1-\mathbb{P}(E)
\end{aligned}
$$

In particular, $\mathbb{P}(\phi)=1-1=0$

