Measurement
To keep things simple, let's talk about measuring angle segments in the unit circle

$$
S=\{z \in \mathbb{C}:|z|=1\}
$$

For a given subset $E \subseteq S$ wed like to assign a number

$$
\mathbb{P}(E)=\text { proportion of the circle } \in[0,1]
$$

Properties of Measurements

1. $\mathbb{P}(S)=1, \mathbb{P}: 2^{S} \rightarrow[0,1]$
2. If $E_{1}, E_{2} \subseteq S$ are disjoint $E_{1} \cap E_{2}=\varnothing$ then $\mathbb{P}\left(E_{1} \cup E_{2}\right)=\mathbb{P}\left(E_{1}\right)+\mathbb{P}\left(E_{2}\right)$
2'. If $\left\{E_{j}\right\}_{j=1}^{\infty}$ are $\frac{\text { disjoin } b}{\omega_{\infty}^{\infty}} \quad E_{i} \cap E_{j}=\varnothing \quad \forall i z j$. then $\mathbb{P}\left(\bigcup_{j=1}^{\infty} E_{j}\right)=\sum_{j=1}^{\infty} \mathbb{P}\left(E_{j}\right)$
3. If $E_{1}, E_{2} \subseteq S^{1}$ are congruent then $\mathbb{P}\left(E_{1}\right)=\mathbb{P}\left(E_{2}\right)$

Theorem:

Proof. If $E \subseteq S$ and $u \in S$ then E and

$$
u=e^{i \theta} \quad \partial E=\{u z: z \in E\}
$$

are congruent. \therefore by $(3), \mathbb{P}(E)=\mathbb{P}(u E) \forall u \in S$.
Now, consider $\& \supset T:=\left\{e^{2 \pi i t}: t \in \mathbb{Q}\right\}$ (Countable) $S / \pi=\{$ equivalence classes in S
Ax aw ${ }_{0}^{w}$ anile. where $z \sim w \Leftrightarrow z=u w$ for some $\left.u \in \pi\right\}$.
Choose exactly 1 representative element φ from each equivalence caps, and let $\Phi=\{\varphi\} \subset \$$ be the collection of all there representatives.

Claim:
(1) $\mathbb{S}=\bigcup_{u \in \pi} u \Phi$
(2) if $u_{1} \|_{2} \in T, u_{1} \Phi \subset u_{2} \Phi=\phi$

$$
1=\mathbb{(1)}(S)=\mathbb{P}\left(\bigcup_{u \in \pi} u \Phi\right)=\sum_{\left(2^{\prime}\right)} \in \mathbb{\pi} \mathbb{R}(u \Phi)=\sum_{(3)} \mathbb{n} \mathbb{C}(\Phi)=\left\{\begin{array}{l}
0 \\
\infty \\
N
\end{array}\right.
$$

Contradicting Calculus?
The measurement function \mathbb{P}, satisfying $(1),\left(2^{\prime}\right),(3)$ is used daily in Calculus!

$$
\mathbb{P}(E)=\frac{1}{2 \pi} \int_{E} d \theta
$$

So how can it fail to exist?

The answer lies in an important subtlety: the definition of the Riemann integral only works ever "nice" setts. The set Φ is not nice!
Much of this quarter will be spent extending the Riemann integral. BUT there's only so far it can be extended

The Moral of the Story

$$
\begin{aligned}
p: & 2^{8} \rightarrow[0,1] \\
& \mathcal{F} \nsubseteq 2^{s}
\end{aligned}
$$

This might seem like a bad sign... but it is actually a foundational truth for Kolmogorov's probability theory (that we now embark on developing).
In short: we don't always have complete information about the wold, which means there may be some events we simply cannot assign probabilities to.
As to the unmeasurable sets...

Banach-Tarski Paradox (1942)
Given any two subsets $E, F \subseteq \mathbb{R}^{3}$ with nonempty interior, there are finite partitions

$$
\begin{aligned}
& E=E_{1} \cup E_{2} \cup \cdots \cup E_{n} \\
& F=F_{1} \cup F_{2} \cup \cdots \cup F_{n}
\end{aligned}
$$

such that E_{j} is congruent to F_{j} for $1 \leqslant j \leqslant n$.
Robinson's Doubling Theorem (1947)
If E is a solid ball in \mathbb{R}^{3}, and F is the disjoint balls of the same radius, then Banach-Torski works explicitly with $n=5$.

