Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: $\{2.4-2.5,4.4$
Lab 2.2 due $\begin{gathered}\text { Tonight } \\ \text { (maybe? }\end{gathered}$
Next: $\{3.3$
HW3 due Friday.
Midterm next wed evening

* Regrade requests for Lab1 : window Thursday 10/17
\rightarrow separate request for each problem 8 am - 11 pm \rightarrow detailed, polite responses please.
* The material slotted for today's lecture is the cutoff for Midterm 1.

Independent Randan Variables
A collection $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ of random variables defined on the same sample space are independent if for any $B_{1}, B_{2}, \ldots B_{n} \subseteq \mathbb{R}$, the events
$\left\{X_{1} \in B_{1}\right\},\left\{X_{2} \in B_{2}\right\}, \ldots,\left\{X_{n} \in B_{n}\right\}$ are independent.

Special Case: if the X_{j} are discrete random variables, it suffice to check the simpler condition for any real numbers $t_{1}, k_{2}, \ldots, t_{n}$

Eg. Let $X_{1}, X_{2}, \ldots, X_{n}$ be fair coin tosses. Denote H~1, T~O

Independent Trials
Experiments can have numerical observables, but sometimes you only observe whether there is success
or failure
We model this with a random variable X taking value 1 with some probability p, and value 0 with probability $1-p$.

$$
X \sim \operatorname{Ber}(p) \quad(\operatorname{Bernoulli})
$$

In practice, we usually repeat the experiment many times, making sure to use the same setup each trial. The previous trials do not influence the future ones.

How many successful trials?
Run n independent trials, each with success probability p.

$$
X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Ber}(p)
$$

Let $S_{n}=\#$ successful trials
What is the distribution of S_{n} ?

Eg. Roll a fair die 10 times. What is the probability that 6 comes up at least 3 times?

Eg. What is the probability that no 6 is rolled in the 10 rolls?

Now, keep rolling. Let N denete the first roll where a 6 appears. N is a randem variable. What is its distribution?

First Success Time
$N=$ first success in repeated independent trials (success rate p). Model trials with (unlimited number) of independent $\operatorname{Ber}(p)$'s:

$$
\begin{aligned}
& x_{1}, x_{2}, x_{3}, X_{4}, \ldots \\
& \{N=k\}=\left\{x_{1}=0, X_{2}=0, X_{3}=0, \ldots, X_{k-1}=0, X_{k}=1\right\}
\end{aligned}
$$

Geometric Distribution $\operatorname{Geem}(p)$ on $\{0,1,2,3, \ldots\}=\mathbb{N}$.

Rare Events
If $S_{n}=S_{n, p} \sim \operatorname{Bin}(n, p), S_{n}$ is the number of successes in n independent trials each with success probability p.
What if p is very small, but n is very large?
One way to handle this mathematically is a
\rightarrow For each n, take $p \propto \frac{1}{n} . p=\frac{\lambda}{n}$ for some $\lambda>0$.

$$
\mathbb{P}\left(S_{n, p}=k\right)=
$$

What happens as $n \rightarrow \infty$?

$$
\mathbb{P}\left(S_{n, p}=k\right)=\binom{n}{k}\left(\frac{\lambda}{n}\right)^{k}\left(1-\frac{\lambda}{n}\right)^{n-k}
$$

Poisson Distribution
A random variable X has the Poisson (λ) distribution if

$$
\mathbb{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \ldots
$$

Eg. A 100 year storm is a storm magnitude expected to occur in any given year with probability 1/100.
Over the course of a century, how likely is it to see at least 4100 year storms?

Summary
Sampling independent trials, the most important (discrete) probability distributions are:

- $\operatorname{Ber}(p): \mathbb{P}(X=1)=p, \mathbb{P}(X=0)=1-p \quad 0 \leqslant p \leqslant 1$ (single trial with success probability p)
- $\operatorname{Bin}(n, p): \mathbb{P}\left(S_{n}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad 0 \leqslant k \leqslant n$ (number of successes in n independent trials with rate p)
- $\operatorname{Greom}(p) \quad \mathbb{P}(N=k)=(1-p)^{k-1} p \quad k=0,1,2, \ldots$
(first successful trial in repeated independent trials with rate p)
- Poisson (λ) $\mathbb{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!} \quad k=0,1,2, \ldots \quad \lambda>0$. (Approximates $\operatorname{Bino}(n, \lambda / n)$; number of rare events in many trials)

