Math $180 A:$ Intro to Probability (for Data Science)
www, math. ucsd.edu/~tkemp/180A
Today: $\S 3.2,2.4$
Next: $\{2.5,4.4$
Lab 2.2 due TONIGHT $\$
HW3 due Friday.
Midterm next wed evening
 L detailed, polite responses please.

* HW3 Problem 8 : changed $2.25 \rightarrow 2.21$

Cumulative Distribution Function (CDF)
For any random variable $X, F_{X}(r)=\mathbb{P}(X \leqslant r) . \quad r \in \mathbb{R}$
(1) Monotone increasing: $s \leq t \Rightarrow F_{x}(s) \leq F_{x}(t)$
(2) $\lim _{r \rightarrow-\infty} F_{x}(r)=0, \lim _{r \rightarrow+\infty} F_{x}(r)=1$
(3) The function F_{x} is right-continueus: $\lim _{t \rightarrow r+} F_{x}(t)=F_{x}(r)$.

Discrete randem variable:
finite or countable set of values $t_{1}, t_{2}, t_{3}, \ldots$ with $\mathbb{P}\left(X=t_{j}\right)>0$ and $\quad \sum_{j} \mathbb{P}\left(X=t_{j}\right)=1$.

Continuous random variable for each real number $t, \mathbb{P}(x=t)=0$. Because of (1) \& (3) above, this implies that F_{x} is continues.

Densities
Some continuous random variables have probability densities. This is an infinitesimal version of a probability mass function.

$$
X \text { discrete, } \in\left\{t_{1}, t_{2}, t_{3}, \ldots\right\}
$$

$P_{x}(t)=\mathbb{P}(X=t) \begin{aligned} & \text { probability } \\ & \text { mass function }\end{aligned}$

$$
\mathbb{P}(X \in A)=\sum_{k \in A} \mathbb{P}(X=t)
$$

$$
=\sum_{t \in A} p_{x}(t)
$$

$$
p_{x}(t) \geqslant 0, \quad \sum_{t} p_{x}(t)=1 .
$$

X continuous

$$
\mathbb{P}(X=t)=0 \text { for all } t \in \mathbb{R}
$$

Eg. Shoot an arrow at a circular target of radius 1.

$$
\begin{aligned}
& Y=\text { distance from center. } \\
& \int_{-\infty}^{r} f(t) d t \stackrel{?}{=} \mathbb{P}(Y \in(-\infty, r])=F_{Y}(r)= \begin{cases}0, & r \leqslant 0 \\
r^{2}, & 0 \leqslant r \leqslant 1 \\
1, & r \geq 1\end{cases}
\end{aligned}
$$

Theorem: If F_{x} is continuous and piecewise differentiable, then x has a density $f_{x}=F_{x}^{\prime}$.
Proof:
Eg. Let $X=$ a uniformly random number in $[0,1]$. As we discussed in lecture 2, this means

$$
\mathbb{P}(X \in[s, t])=t-s \text { if } 0 \leqslant s<t \leqslant 1
$$

Eg. Let $f(t)=c \sqrt{b^{2}-t^{2}}$ for $|t| \leq b$, o otherwise (for some positive constants $b c>0$).

Is f a probability density?

Eg. Your car is in a minor accident; the damage repair cost is a random number between $\$ 100$ and $\$ 1500$. Your insurace deductible is $\$ 500$. $z=$ your out of pocket expenses.
The random variable Z is
(a) Continuous
(b) discrete
(c) neither
(d) both

Independent Randan Variables
A collection $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ of random variables defined on the same sample space are independent if for any $B_{1}, B_{2}, \ldots B_{n} \subseteq \mathbb{R}$, the events
$\left\{X_{1} \in B_{1}\right\},\left\{X_{2} \in B_{2}\right\}, \ldots,\left\{X_{n} \in B_{n}\right\}$ are independent.

Special Case: if the X_{j} are discrete random variables, it suffice to check the simpler condition for any real numbers $t_{1}, k_{2}, \ldots, t_{n}$

Eg. Let $X_{1}, X_{2}, \ldots, X_{n}$ be fair coin tosses. Denote H~1, T~O

Independent Trials
Experiments can have numerical observables, but sometimes you only observe whether there is success
or failure
We model this with a random variable X taking value 1 with some probability p, and value 0 with probability $1-p$.

$$
X \sim \operatorname{Ber}(p) \quad(\operatorname{Bernoulli})
$$

In practice, we usually repeat the experiment many times, making sure to use the same setup each trial. The previous trials do not influence the future ones.

How many successful trials?
Run n independent trials, each with success probability p.

$$
X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Ber}(p)
$$

Let $S_{n}=\#$ successful trials
What is the distribution of S_{n} ?

Eg. Roll a fair die 10 times. What is the probability that 6 comes up at least 3 times?

Eg. What is the probability that no 6 is rolled in the 10 rolls?

Now, keep rolling. Let N denete the first roll where a 6 appears. N is a randem variable. What is its distribution?

First Success Time
$N=$ first success in repeated independent trials (success rate p). Model trials with (unlimited number) of independent $\operatorname{Ber}(p)$'s:

$$
\begin{aligned}
& x_{1}, x_{2}, x_{3}, X_{4}, \ldots \\
& \{N=k\}=\left\{x_{1}=0, X_{2}=0, X_{3}=0, \ldots, X_{k-1}=0, X_{k}=1\right\}
\end{aligned}
$$

Geometric Distribution $\operatorname{Geem}(p)$ on $\{0,1,2,3, \ldots\}=\mathbb{N}$.

