MATH 180A: INTRO TO PROBABILITY (FOR DATA SCIENCE)

- www.math.ucsd.edu/~tkemp/180Å
- Today: § 3.1-3.2 HW2 due TONIGHT / Lab 2.2 due Monday, 10/14 Next: § 2.4-2.5
- * Regrade requests for HW1: window Tuesday 10/15 La separate request for each problem La detailed, polite responses please.
- * Numerical answers for HW in rubric on Gradescope
- * Lab 1 Solutions posted on datahub.ucsd.edu.

Randon Variables

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ a random variable is a function $\chi: \Omega \to \mathbb{R}$

This is a bad, old-fashioned name. Would be better to call it a random function or random measurement.

In all these examples, think about what you observe. You can't really see a formula for the function. By repeating the experiment over and over, all you can learn is the

Probability Distribution 3.2Given a probability space $(\mathcal{L}, \mathcal{F}, \mathbb{P})$ and a random variable $X: \Omega \rightarrow \mathbb{R}$

the probability distribution or law of X is a probability measure. $A \subseteq \mathbb{R} \longrightarrow \mu_X(A) =$

[Cantion: for this to make sense, we need to have a designated set of allowed "events" in IR; call this collection 93(IR) Then, we must have

[This is a condition on X; we call such functions measurable.

We will ignore these technicalities in this course; all our random] variables are indeed measurable.

Eg. Tossafair coin 4 times. Let X = number of tails. $\Omega = \{ (X_1, X_2, X_3, X_4) \in \{H, T\}^4 \}$ X < {0,1,2,3,4} CR P = uniform on S2; $P\{(x_1, x_2, x_3, x_4)\} = \frac{1}{24} = \frac{1}{16}$ if ASR does not contain one of these numbers, $\mu_X(A) = 0$ By additivity of probability measures, to understand MX, just need to $know \qquad M_{X}(\{k\}) = ? \quad o \le k \le 4$ $\mathbb{P}(X=k) = \mathbb{P}_{X}(k)$ K 0 1 2 3 4 Px(k)

Ly μ_X is described by the probability mass function $p_X(k) = IP(X-k)$ $k \in \{k_1, k_2, k_3, ...\}$

In this case, by the laws of probability,

<u>continuous</u>: For any real number tell, P(X=t) = 0. $\downarrow \mu_X$ is captured by understanding $P(X \le r)$ as a function of r.

Properties of the CDF $F_X(v) = P(X \le v)$ (1) Monotone increasing: $s \le t \Rightarrow F_X(s) \le F_X(t)$

(2) $\lim_{r \to -\infty} F_X(r) = 0$, $\lim_{r \to +\infty} F_X(r) = 1$.

(3) The function F_X is right-continuous: $\lim_{t \to r+} F_X(t) = F_X(r)$.

Corollary: If X is a continuous random variable, Fx is a continuous function.

Densities

Some continuous random variables have probability densities. This is an infinitesimal version of a probability mass function.

X discrete, E{K, K2, K3, -} X Continuous

 $P_X(k) = P(X=k)$ P(

 $p_{X}(k) \ge 0, \qquad \sum_{k} p_{X}(k) = 1.$

Theorem: If F_x is continuous and piecewise differentiable, then x has a density $f_x = F_x'$.

Eg. Let X = a uniformly random number in [0,1]. As we discussed in lecture 2, this means $\mathbb{P}(\chi \in [s, t]) = t - s \quad \text{if} \quad 0 \leq s < t \leq 1.$

- Eq. Your car is in a minor accident; the damage repair Gst is a random number between \$100 and \$1500. Your insurace deductible is \$500. Z = your out of pocket expenses.
 - The random variable Z is
 - (a) Continuous
 - (b) discrete
 - (c) neither
 - (d) both