Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: $\{3.1-3.2$
Next: $\{2.4-2.5$
HW2 due TONIGHT V Lab 2.2 due Monday, $10 / 14$

* Regrade requests for HW1: window Tuesday 10/15
\rightarrow separate request for each problem
8am-11pm
\rightarrow detailed, polite responses please.
* Numerical answers for HW in rubric on Gradescape
* Lab 1 solutions posted on datahub.ucsd ed

Random Variables
Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ a random variable is a function

$$
X: \Omega \rightarrow \mathbb{R}
$$

This is a bad, old-fashioned name. Would be better $\frac{1}{6}$ call it a random function or random measurement.

Eg. Tass a fair coin 4 times. Let $X=$ number of tails.
Eg. Shoot an arrow at a circular target. $Y=$ distance from center.
Eg. Your car is in a minor accident; the damage repair cot is a random number between $\$ 100$ and $\$ 1500$. Your insurace deductible is $\$ 500$. $z=$ your out of pocket expenses.
In all these examples, think about what you observe. You can't really see a formula for the function. By repeating the experiment aver and over, all you can learn is the

Probability Distribution
Given a probability space (Ω, F, \mathbb{P}) and a random variable

$$
X: \Omega \rightarrow \mathbb{R}
$$

the probability distribution or law of X is a probability measure μ_{x} oN \mathbb{R}

$$
A \subseteq \mathbb{R} \rightarrow \mu_{x}(A)=
$$

[Caution: for this to make sense, we need to have a designated set of allowed "events" in \mathbb{R}; call this collection $B(\mathbb{R})$
Then, we must have

We will ignore these technicalities in this course; all our random] variables are indeed measwable.

Eg. Tass a fair coin 4 times. Let $X=$ number of tails.

$$
\begin{array}{ll}
\Omega=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in\{H, T\}\right.
\end{array} \quad \begin{aligned}
& \mathbb{4}\} \\
& \mathbb{P}=\text { uniform an } \Omega ;
\end{aligned}
$$

$$
\mathbb{P}\left\{\left(x_{1}, x_{2}, x_{3} x_{4}\right)\right\}=\frac{1}{2^{4}}=\frac{1}{16}
$$

if $A \subseteq \mathbb{R}$ does not contain one of these numbers, $\mu_{x}(A)=0$.
By additivity of probability measures, to understand μ_{x}, just need to know

\[

\]

Eg. Shoot an arrow at a circular target of radius 1.

$$
Y=\text { distance from center. }
$$

Last lecture, you calculated that:

- If $r \leqslant 0, \mathbb{P}(\gamma \leqslant r)=0$
- If $r \geqslant 1, \mathbb{P}(Y \leqslant r)=1$.
- If $r \geq 1, \mathbb{P}(Y \leqslant r)=1 . \quad \operatorname{Area}\left(\mathbb{D}_{r}\right)$
- If $r \in[0,1], \mathbb{P}(Y \leqslant r)=r^{2}$
$\mathbb{P}(\{Y \in(-\infty, r]\}) \leftarrow$ Can get information about other sets $A \leq \mathbb{R}$ using the properties of \mathbb{P}.
What can we say about $\mathbb{P}(Y=0.4)$?

We will focus mostly on two kinds of random variables:
discrete: There are finitely (or countably) many possible values $\left\{k_{1}, k_{2}, k_{3}, \ldots\right\}$ for X.
$\rightarrow \mu_{x}$ is described by the probability mass function $P_{x}(k)=\mathbb{P}(X=k)$
In this case, by the laws of probability,
continuous: For any real number $t \in \mathbb{R}, \mathbb{P}(X=t)=0$.
$\rightarrow \mu_{X}$ is captured by understanding $\mathbb{P}(X \leq r)$ as a function of r.

Cumulative Distribution Function (CDF)
Actually works
Far any random variable $X, F_{X}(r)=\mathbb{P}(X \leq r)$. including discrete Eg. $\mu_{x}=\operatorname{Bin}\left(3, \frac{1}{2}\right)$

k	0	1	2	3
$P_{x}(k)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

- $r<0, \quad\{X \leqslant r\}=$
- $0 \leqslant r<1,\{X \leqslant r\}=$
- $1 \leq r<2,\{X \leqslant r\}=$
- $2 \leqslant r<3,\{X \leqslant r\}=$
- $r \geq 3,\{X \leqslant r\}=$

Properties of the CDF $F_{X}(r)=\mathbb{P}(X \leqslant r)$
(1) Monotone increasing: $s \leqslant t \Rightarrow F_{x}(s) \leqslant F_{x}(t)$
(2) $\lim _{r \rightarrow-\infty} F_{x}(r)=0, \lim _{r \rightarrow+\infty} F_{x}(r)=1$.
(3) The function F_{X} is right-continueus: $\lim _{t \rightarrow r+} F_{X}(t)=F_{X}(r)$.

Corollary: If X is a continuas random variable, F_{X} is a continuous function.

Densities
Some continuous random variables have probability densities. This is an infinitesimal version of a probability mass function.

$$
\begin{aligned}
& X \text { discrete, } \in\left\{k_{1}, k_{2}, k_{3}, \ldots\right\} \\
& p_{x}(k)=\mathbb{P}(X=k) \\
& \begin{aligned}
\mathbb{P}(X \in A) & =\sum_{k \in A} \mathbb{P}(X=k) \\
& =\sum_{k \in A} p_{x}(k)
\end{aligned}
\end{aligned}
$$

$$
p_{x}(k) \geqslant 0, \quad \sum_{k} p_{x}(k)=1 .
$$

X continuous

$$
\mathbb{P}(X=t)=0 \text { for all } t \in \mathbb{R} \text {. }
$$

Eg. Shoot an arrow at a circular target of radius 1.

$$
\begin{aligned}
& Y=\text { distance from center. } \\
& \int_{-\infty}^{r} f(t) d t \stackrel{?}{=} \mathbb{P}(Y \in(-\infty, r])=F_{Y}(r)= \begin{cases}0, & r \leqslant 0 \\
r^{2}, & 0 \leqslant r \leqslant 1 \\
1, & r \geq 1\end{cases}
\end{aligned}
$$

Theorem: If F_{x} is continuous and piecewise differentiable, then x has a density $f_{x}=F_{x}^{\prime}$.
Proof:
Eg. Let $X=$ a uniformly random number in $[0,1]$. As we discussed in lecture 2, this means

$$
\mathbb{P}(X \in[s, t])=t-s \text { if } 0 \leqslant s<t \leqslant 1
$$

Eg. Let $f(t)=c \sqrt{b^{2}-t^{2}}$ for $|t| \leq b$, o otherwise (for some positive constants $b c>0$).

Is f a probability density?

Eg. Your car is in a minor accident; the damage repair cost is a random number between $\$ 100$ and $\$ 1500$. Your insurace deductible is $\$ 500$. $z=$ your out of pocket expenses.
The random variable Z is
(a) Continuous
(b) discrete
(c) neither
(d) both

