Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: $\{3.1-3.2$
Next: $\{2.4-2.5$
HW2 due TONIGHT V Lab 2.2 due Monday, $10 / 14$

* Regrade requests for HW1: window Tuesday 10/15
\rightarrow separate request for each problem
8am-11pm
\rightarrow detailed, polite responses please.
* Numerical answers for HW in rubric on Gradescape
* Lab 1 solutions posted on datahub.ucsd ed

Random Variables
Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ a random variable is a function

$$
X: \Omega \rightarrow \mathbb{R}
$$

This is a bad, old-fashioned name. Would be better $\frac{1}{6}$ call it a random function or random measurement.

Eg. Tass a fair coin 4 times. Let $X=$ number of tails.
Eg. Shoot an arrow at a circular target. $Y=$ distance from center.
Eg. Your car is in a minor accident; the damage repair cot is a random number between $\$ 100$ and $\$ 1500$. Your insurace deductible is $\$ 500$. $z=$ your out of pocket expenses.
In all these examples, think about what you observe. You can't really see a formula for the function. By repeating the experiment aver and over, all you can learn is the probability distribution.

Probability Distribution
Given a probability space $(\Omega(J P)$ and a random variable

$$
X: \Omega \rightarrow \mathbb{R}
$$

the probability distribution or law of X is a probability measure μ_{x} on \mathbb{R}

$$
A \subseteq \mathbb{R} \leadsto \mu_{x}(A)=\mathbb{P}(\{X \in A\})
$$

[Caution: for this to make sense, we need to have a designated set of allowed "events" in \mathbb{R}; call this collection $9(\mathbb{R})$
Then, we must have

$$
\left[\begin{array}{l}
\text { For each } A \in M(I R),\{X \in A\} \in \mathcal{F} \\
\text { This is a condition on } X \text {; we call such functions } \\
\text { measurable. }
\end{array}\right.
$$

We will ignore these technicalities in this course; all our random.] variables are indeed measwable.

Eg. Tass a fair coin 4 times. Let $X=$ number of tails.

$$
\begin{aligned}
& \Omega=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in\{H, T\}\right\} \\
& \mathbb{P}=\text { uniform on } \Omega ;
\end{aligned}
$$

$$
\mathbb{P}\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right\}=\frac{1}{2^{4}}=\frac{1}{16}
$$

$$
\{x=2\}=\{(T, T, H, H)
$$

$$
(T, H, T, H), \ldots\}
$$

$$
H\{X=2\}=\binom{4}{2} \text {. }
$$

$$
P(X=2)=\frac{\binom{4}{2}}{16}=\frac{3}{8}
$$

$$
\mathbb{P}(X=k)=\frac{\binom{4}{k}}{16}
$$

$$
X=\text { tails in } n \text { com tosses, }
$$

Binomial

$$
P_{x}(k)=\underset{\substack{ \\0 \leqslant k \leq n}}{\mathbb{P}(X=k)}=\frac{1}{2^{n}}\binom{n}{k}
$$

$\operatorname{Bin}\left(n, \frac{1}{2}\right)$

Eg. Shoot an arrow at a circular target of radius 1.

$$
Y=\text { distance from center. }
$$

ab $\varepsilon \rightarrow 0$,
this $\rightarrow 0$.
$\mathbb{P}(\{Y \in(-\infty, r]\})$

What can we say about $\mathbb{P}(Y=0.4) \Longrightarrow 0$.

$$
\mathbb{P}(Y \in(0.3,0.47)
$$

$$
(0.3,0.4]
$$

$$
\mu_{\gamma}(-\infty, 0.4]=\mu_{\gamma}(-\infty, 0.3]+\mu_{\gamma} \underbrace{(2.33}_{11} 0.4]
$$

$$
0.4^{2}-0.3^{2}=0.07
$$

$$
(-\infty, 0.4]=(-\infty, 0.3] \cup(0.3,0.4]
$$

$$
\mathbb{P}(Y \in(0.4-\varepsilon, 0.4])=0.4^{2}-(0.4-\varepsilon)^{2}
$$

We will focus mostly on two kinds of random variables:
discrete: There are finitely (or countably) many possible values $\left\{k_{1}, k_{2}, k_{3}, \ldots\right\}$ for X.
$\rightarrow \mu_{x}$ is described by the probability mass function $p_{x}(k)=\mathbb{P}(X=k)$
In this case, by the laws of probability,

$$
k \in\left\{k_{1}, n_{2} k_{3}, \ldots\right\}
$$

$$
P_{x}(k) \geqslant 0 \text { for each } k, \quad \sum_{j=1}^{n} P_{x}(j)=1 \text {. }
$$

continuous) For any real number $t \in \mathbb{R}, \mathbb{P}(X=t)=0$.
μ_{x} is captured by understanding $\mathbb{P}(X \leq r)$ as a function of r.
Eg. $\mathbb{P}(X \in[a, b])=\mathbb{P}(\{X=a\} \cup\{X \in(a, b]\})$

$$
\begin{aligned}
=\mathbb{P}(x \neq a)+ & \mathbb{P}(x \in(a, b)) \\
& =\mathbb{P}(x \leq b)-\mathbb{P}(x \leq a)
\end{aligned}
$$

Cumulative Distribution Function (CDF)
For any random variable $X, F_{X}(r)=\mathbb{P}(X \leqslant r) \leq: \begin{aligned} & \text { in all cases - } \\ & \text { including discrete }\end{aligned}$
Eg. $\mu_{x}=\operatorname{Bin}\left(3, \frac{1}{2}\right)$

k	0	1	2	3
$P_{x}(k)$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

- $r<0,\{x \leqslant r\}=\varnothing \mathbb{P}(x \leqslant r)=0$
- $0 \leqslant r<1,\{X \leq r\}=\{X=0\} \quad \mathbb{P}(X \leq r)=\mathbb{P}(X=0)=1 / 8$
- $1 \leq r<2,\{X \leq r\}=\{X=0,1\} \mathbb{P}(X \leq r)=\mathbb{P}(X=0)+\mathbb{P}(X=1)=\frac{1}{8} \frac{1}{8}=\frac{1}{2}$
- $2 \leqslant r<3,\{X \leqslant r\}=$
- $r \geq 3,\{x \leq r\}=$:

Properties of the CDF $F_{X}(r)=\mathbb{P}(X \leqslant r)$
(1) Monotone increasing: $s \leqslant t \Rightarrow F_{x}(s) \leqslant F_{x}(t)$
(2) $\lim _{r \rightarrow-\infty} F_{x}(r)=0, \lim _{r \rightarrow+\infty} F_{x}(r)=1$.
(3) The function F_{X} is right-continueus: $\lim _{t \rightarrow r+} F_{X}(t)=F_{X}(r)$.

Corollary: If X is a continuas random variable, F_{X} is a continuous function.

Densities
Some continuous random variables have probability densities. This is an infinitesimal version of a probability mass function.

X continuous

$$
\begin{aligned}
& \mathbb{P}(x=t)=0 \text { for all } t \in \mathbb{R} . \\
& \quad \mathbb{P}(x \in A)=\int f_{x}(t) d t
\end{aligned}
$$

$$
p_{x}(k) \geqslant 0, \quad \sum_{k} p_{x}(k)=1 .
$$

Eg. Shoot an arrow at a circular target of radius 1.
$Y=$ distance from center.

$$
\int_{-\infty}^{r} f(t) d t \quad \stackrel{?}{=} \mathbb{P}(Y \in(-\infty, r])=F_{Y}(r)= \begin{cases}0, & r \leqslant 0 \\ r^{2}, & e \leqslant r \leqslant 1 \\ 1, & r \geq 1\end{cases}
$$

