MATH 180A: INTRO TO PROBABILITY (FOR DATA SCIENCE)

- www.math.ucsd.edu/~tkemp/180Å
- Today: § 3.1-3.2 HW2 due TONIGHT / Lab 2.2 due Monday, 10/14 Next: § 2.4-2.5
- * Regrade requests for HW1: window Tuesday 10/15 La separate request for each problem La detailed, polite responses please.
- * Numerical answers for HW in rubric on Gradescope
- * Lab 1 Solutions posted on datahub.ucsd.edu.

Random Variables

Given a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ a random variable is a function $\chi: \Omega \to \mathbb{R}$

This is a bad, old-fashioned name. Would be better to call it a random function or random measurement.

In all these examples, think about what you observe. You can't really see a formula for the function. By repeating the experiment over and over, all you can learn is the probability distribution.

Probability Distribution 3.2Given a probability space ($\Omega(\mathcal{P})\mathcal{P}$) and a random variable $X: \Omega \rightarrow \mathbb{R}$

the probability distribution or law of X is a probability measure $A \subseteq \mathbb{R} \longrightarrow \mu_X(A) = \mathbb{P}(\{X \in A\})$ [Cantion: for this to make sense, we need to have a designated set of allowed "events" in IR; call this collection 93(IR) Then, we must have For each AE93(IR), {XEAJEJ. L This is a condition on X; we call such functions measurable. We will ignore these technicalities in this course; all our random] variables are indeed measurable.

Eg. Tossafair coin 4 times. Let X = number of tails, $\Omega = \{ (X_1, X_2, X_3, X_4) \in \{H, T\}^4 \}$ X { { 0, 1, 2, 3, 4 } CR P= uniform on 2; if ASR does not contain one $\mathbb{P}\left\{(X_1, X_2, X_3, X_4)\right\} = \frac{1}{24} = \frac{1}{16}$ of these numbers, $M_X(A) = 0$ $\{\chi = 2\} = \{(\tau, \tau, H, H), (\tau, H, T, H), (\tau, H, \tau, H), \dots \}$ By additivity of probability measures, to understand MX, just need to $\#\{\chi=2\} = \begin{pmatrix}4\\2\end{pmatrix}$. $know \qquad M_{X}(\{k\}) = ? \quad o \le k \le 4$ $P(X=2) = \frac{\binom{4}{2}}{\frac{16}{8}} = \frac{3}{8}$ $\mathbb{P}(X=k) = \mathbb{P}_{X}(k)$ K 0 1 2 3 4 $P(X=k) = \binom{4}{k}$ Px(k) 116 14 3/8 14 16 X = #tails in n com torses, Binamia $P_{X}(k) = \prod_{k=1}^{\infty} (X = k) = \frac{1}{2^{n}} {n \choose k}$ $Bin(n, \frac{1}{2})$

Properties of the CDF $F_X(v) = P(X \le v)$ (1) Monotone increasing: $s \le t \Rightarrow F_X(s) \le F_X(t)$

(2) $\lim_{r \to -\infty} F_X(r) = 0$, $\lim_{r \to +\infty} F_X(r) = 1$.

(3) The function F_X is right-continuous: $\lim_{t \to r+} F_X(t) = F_X(r)$.

Corollary: If X is a continuous random variable, Fx is a continuous function.

Densities

Some continuous random variables have probability densities. This is an infinitesimal version of a probability mass function. X discrete, E {K, K2, K3, --} X continuous P(X=t)=0 for all $t \in \mathbb{R}$. $P_X(k) = P(X=k)$ $P(X \in A) = \int f_x(H) dt$ $P(X \in A) = \sum_{k \in A} P(X = k)$ $= \sum_{k \in A} P_X(k)$

 $p_{x}(k) \ge 0, \sum_{k} p_{x}(k) = 1.$

