Math 180 A: Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: $\quad \xi 2.2-2.3$ Labil due TONIGHT?
Next: $\{1.5,3.1 \quad$ HW2 due Friday, $10 / 11$.
Screencast \& video available after each lecture @ podcast.ucsd.edu
Before / After slides now available on course webpage.
Lots of active discussion on Piazza.

Law of Total Probability
If $B_{1}, B_{2}, \ldots, B_{n}$ partition $\Omega\left(\right.$ disjoint $\left., B_{1}, \ldots \cup B_{n}=\Omega, \mathbb{P}\left(B_{j}\right)>0\right)$

then for any event A

$$
\mathbb{P}(A)=\mathbb{P}\left(A B_{1} \cup A B_{2} \cup \cdots \cup A B_{n}\right)=\sum_{j=1}^{n} \mathbb{P}\left(B_{j}\right) \mathbb{P}\left(A \mid B_{j}\right)
$$

Eg. 90% of coins are fair, 9% are biased to_{6} come up heads 60%. 1% are biased to come up heeds 80%.
Yon find a coirs on the street. How likely is it $\hbar 6$ come up heads?
$B_{1}=\{$ fair cons $\} \quad \mathbb{P}\left(B_{1}\right)=90 \% \quad \mathbb{P}\left(A \mid B_{1}\right)=50 \%$
$B_{2}=\{604$. heads $\} \mathbb{P}\left(B_{2}\right)=9 \% \quad \mathbb{P}\left(A \mid B_{2}\right)=60 \% \longrightarrow \mathbb{P}(A)=51.2 \%$
$B_{2}=\{80 \%$ head 6$\} \quad \mathbb{P}\left(B_{3}\right)=1 \% \quad \mathbb{P}\left(A \mid B_{3}\right)=80 \%$
$A=\{$ head $\}$

Question:
90% of coins are fair, 9% are biased to come up heads 60%. 1% are biased to come up heads 80%.
Yon find a Cairo on the street. You toss it, and it comes up heads.
How likely is it that this Gin is heavily biased?

Eg. According to Forbes Magazine, as of April 10, 2019, there are 2208 billionaires in the world. 1964 of them are men.

Bayes' Rule (A relationship between $\mathbb{P}(A \mid B)$ and $\mathbb{P}(B \mid A)$) Let $B_{1}, B_{2}, \ldots, B_{n}$ partition the sample space. Then for any event A with $\mathbb{P}(A)>0$,

$$
\begin{aligned}
\mathbb{P}\left(B_{k} \mid A\right) & =\mathbb{P}\left(B_{k} A\right) / \mathbb{P}(A) \\
& =\frac{\mathbb{P}\left(A \mid B_{k}\right) \mathbb{P}\left(B_{k}\right)}{\mathbb{P}(A)}=\frac{\mathbb{P}\left(A \mid B_{k}\right) \mathbb{P}\left(B_{k}\right)}{\sum_{j=1}^{n} \mathbb{P}\left(A \mid B_{j}\right) \mathbb{P}\left(B_{j}\right)}
\end{aligned}
$$

Epidemiological Confusion
An HIV test is 99% accurate. (1\% false positives, 1\% false negatives.) 0.33% of US residents have HIV.
If you test positive, what is the probability you have HIV?
(a) 99%
(b) 1%
(C) 25%
(d) 0.33%
(e) There is not enough information to answer.

The Monty Hall Problem

At the climax of a gameshow, you are shown 3 doors. The host tells you that, behind one of them is a valuable prize (a car), while the other two hide nothing of value (goats).
You choose one. The host then opens one of the two doors you did not choose, revealing a goat. He then asks you if you wont to stick with your original choice, or switch to the other closed door.

Should you switch??
(a) Yes.
(b) No.
(c) Doesint matter.

The Monty Hall Problem

Let's decide to call the door you chose originlly \#1.
\therefore Monty will open \#2 or \#3. Well focus our analysis on \#2
$B_{i}=\{$ the car is behind door \#i\}.

$$
A=\{\text { Monty opens door } \# 2\}
$$

$$
\begin{aligned}
& \mathbb{P}\left(B_{1}\right)=\mathbb{P}\left(B_{2}\right)=\mathbb{P}\left(B_{3}\right)=\frac{1}{3} \\
& \mathbb{P}\left(A \mid B_{2}\right)= \\
& \mathbb{P}\left(A \mid B_{3}\right)= \\
& \mathbb{P}\left(A \mid B_{1}\right)=
\end{aligned}
$$

Suppose two events A and B really have nothing to de with each other. That doesn't mean they're disjoint; it means they have no influence on each other.
Eg. Flip a Coin 3 times.
$A=\{$ the first toss is heads $\}$
$B=\{$ the second toss is tails $\}$

$$
\begin{aligned}
& A=\{\text { HaH, HHs, TH, HsT }\} \\
& B=\quad\{H T H, H T T, \text { TH, ToT }\}
\end{aligned}
$$

Def: Two events A, B are (statistically) independent if

Egg. . © An urn has 4 red and 7 blue balls.
Two balls are sampled
$A=\left\{1^{s t}\right.$ ball is red $\}$
$B=\left\{2^{\text {nd }}\right.$ ball is blue $\}$
Are A and B independent?
(a) Yes.
(b) No.
(c) Can't tell from the question.

How about 3 events?
Eg. A coin is tossed 3 times.
$A=\{$ there is exactly 1 tails in the first two $\}$
$B=\{$ there is exactly 1 tail in the second two $\}$
$C=\{$ there is exactly 1 tail in the first s third $\}$

$$
\begin{array}{rlrl}
A=\{T H *, & H T *\} & B=\{* T H, * H T\} & C=\{T * H, H * T\} \\
\searrow & \swarrow \\
A B=\{T H T, H T H\} & \rightarrow \text { but } A B C=\phi .
\end{array}
$$

$$
\mathbb{P}(A)=\mathbb{P}(B)=\mathbb{P}(C)=\quad \mathbb{P}(A B)=
$$

A, B

$$
\begin{aligned}
& B, C \\
& A, C
\end{aligned}
$$

Def: A collection $A_{1}, A_{2}, \ldots, A_{n}$ of events are independent if: for every subcollection $A_{i_{1}}, A_{i_{2}}, \ldots, A_{i_{m}}\left(1 \leqslant i_{1}<i_{2}<\ldots<i_{m} \leqslant h\right)$

$$
\mathbb{P}\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{n}}\right)=\mathbb{P}\left(A_{i_{1}}\right) \mathbb{P}\left(A_{i_{2}}\right) \cdots \mathbb{P}\left(A_{i_{n}}\right) .
$$

Eg. When $n=3$, this means we must have

$$
\begin{aligned}
& \mathbb{P}\left(A_{1} A_{2}\right)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{2}\right) \\
& \mathbb{P}\left(A_{1} A_{3}\right)=\mathbb{P}\left(A_{1}\right) \mathbb{P}\left(A_{3}\right) \\
& \mathbb{P}\left(A_{2} A_{3}\right)=\mathbb{P}\left(A_{2}\right) \mathbb{P}\left(A_{3}\right)
\end{aligned}
$$

Eg. A fair coin is tossed n times.

