Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: $\{2.2-2.3$ Labile due TONIGHT.
Next: $\left\{1.5,3.1 \quad \frac{H W 2}{2}\right.$ due Friday, $10 / 11$ < typo fixed 5/a)
Screencast \& video available after each lecture @ podcast.ucsd.edu
Before / After slides now available on course webpage.
Lots of active discussion on Piazza.

Law of Total Probability
If $B_{1}, B_{2}, \ldots, B_{n}$ partition $\Omega\left(\right.$ disjoint $\left., B_{1}, \ldots \cup B_{n}=\Omega, \mathbb{P}\left(B_{j}\right)>0\right)$

then for any event A

$$
\mathbb{P}(A)=\mathbb{P}\left(A B_{1} \cup A B_{2} \cup \cdots \cup A B_{n}\right)=\sum_{j=1}^{n} \mathbb{P}\left(B_{j}\right) \mathbb{P}\left(A \mid B_{j}\right)
$$

Eg. 90% of coins are fair, 9% are biased to come up heads 60%. 1% are biased to come up heads 80%.
Yon find a cire on the street. How likely is it to come up heads?
$B_{1}=\{$ fair cons $\} \quad \mathbb{P}\left(B_{1}\right)=90 \% \quad \mathbb{P}\left(A \mid B_{1}\right)=50 \%$
$B_{2}=\{60 \%$, heads $\} \mathbb{P}\left(B_{2}\right)=9 \% \quad \mathbb{P}\left(A \mid B_{2}\right)=60 \% \longrightarrow \mathbb{P}(A)=51.2 \%$
$B_{2}=\{80 \%$ head 6$\} \quad \mathbb{P}\left(B_{3}\right)=1 \% \quad \mathbb{P}\left(A \mid B_{3}\right)=80 \%$
$A=\{$ head $\}$

Question:
90% of coins are fair, 9% are biased to come up heads 60% 1% are biased to come up heads 80%. Yon find a cairo on the street. You toss it, and it comes up heads. How likely is it that this coin is heavily biased?

$$
\mathbb{P}\left(B_{3} \mid H\right) \neq \mathbb{P}\left(H \mid B_{3}\right)=80 \%
$$

Eg. According to Forbes Magazine, as of April 10, 2019, there are 2208 billionaires in the world. $\downarrow 1964$ of them are men.

$$
\mathbb{P}(M \mid B)=\frac{1964}{2208}=89 \% \quad \neq \mathbb{P}(B / M)
$$

Bayes' Rule (A relationship between $\mathbb{P}(A \mid B)$ and $\mathbb{P}(B \mid A)$) Let $B_{1}, B_{2}, \ldots, B_{n}$ partition the sample space. Then for any event A with $\mathbb{P}(A)>0$,

$$
\begin{aligned}
\mathbb{P}\left(B_{k} \mid A\right) & =\mathbb{P}\left(B_{k} A\right) / \mathbb{P}(A) \\
& =\frac{\mathbb{P}\left(A \mid B_{k}\right) \mathbb{P}\left(B_{k}\right)}{\mathbb{P}(A)}=\frac{\mathbb{P}\left(A \mid B_{k}\right) \mathbb{P}\left(B_{k}\right)}{\sum_{j=1}^{n} \mathbb{P}\left(A \mid B_{j}\right) \mathbb{P}\left(B_{j}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Eg. (Coins) } \mathbb{P}\left(C_{80} \mid H\right) \\
& =\frac{\mathbb{P}\left(C_{80} H\right)}{\mathbb{P}(H)}=\frac{\mathbb{P}\left(H \mid C_{\varepsilon_{0}}\right) \mathbb{P}\left(C_{80}\right)}{\mathbb{P}(H)} V \\
& \frac{(\delta 0 \%)\left(1 \%_{0}\right)}{S 1.210} \rightarrow \frac{\mathbb{P}\left(H \mid C_{80}\right) \mathbb{P}\left(C_{80}\right)}{\left.\left.\mathbb{P}\left(H \mid C_{S_{0}}\right) \mathbb{P} \mid C_{S_{0}}\right)+\mathbb{P} / H \mid C_{60}\right) \mathbb{P}\left(C_{6}\right)+\mathbb{P}\left(H \mid C_{C_{0}}\right)} \\
& \text { - } \boldsymbol{P}\left(\mathcal{C}_{\mathrm{i}}\right) \\
& \approx 1.56 \%
\end{aligned}
$$

Epidemiological Confusion
An HIV test is 99% accurate (19 false positives, 1% false negatives.) 0.33% of US residents have HIV.
If you test positive, what is the probability you have HIV?
(a) 99%
$T=\{$ positive test $\}$

$$
\mathbb{P}\left(T \mid H^{c}\right)=1 \%=\mathbb{P}\left(T^{C} \mid A\right)
$$

(b) 1%
$H=\{$ have HIV $\}$
$\mathbb{P}(H)=0.33 \% \quad 1-\mathbb{P}(T \mid H)$
(c) 25%

$$
\Omega=H \cup H^{c}
$$

(d) 0.33%
(e) There is not enough information to answer.

$$
\begin{aligned}
\mathbb{P}(H \mid T)=\frac{\mathbb{P}(H T)}{\mathbb{P}(T)} & =\frac{\mathbb{P}(T \mid H) \mathbb{P}(H)}{\mathbb{P}(T \mid H) \mathbb{P}(H)+\Phi(T| | H) P\left(H^{\prime}\right)} \\
& =\frac{(0.99)(0.0033)}{(0.99)(0.0033)+(0.91)(99.67 \%)}=24.69 \%
\end{aligned}
$$

The Monty Hall Problem

At the climax of a gameshow, you are shown 3 doors. The host tells you that, behind one of them is a valuable prize (a car), while the other two hide nothing of value (goats).
You choose one. The host then opens one of the two doors you did not choose, revealing a goat. He then asks you if you wont to stick with your original choice, or switch to the other closed door.

Should you switch??
(a) Yes.
(b) No.
(c) Doesint matter.

The Monty Hall Problem

Let's decide to call the door you chose originlly \#1.
\therefore Monty will open \#2 or \#3. Well focus our analysis on \#2
$B_{i}=\{$ the car is behind door \#i\}.

$$
\begin{aligned}
& \mathbb{P}\left(B_{1}\right)=\mathbb{P}\left(B_{2}\right)=\mathbb{P}\left(B_{3}\right)=\frac{1}{3} \\
& \mathbb{P}\left(A \mid B_{2}\right)=0 \\
& \mathbb{P}\left(A \mid B_{3}\right)=1 \\
& \mathbb{P}\left(A \mid B_{1}\right)=\frac{1}{2}
\end{aligned}
$$

$A=\{$ Monty opens door $\# 2\}$
we want to know $\mathbb{P}\left(B_{3} \mid A\right)$.

$$
\begin{aligned}
\mathbb{P}\left(B_{3} \mid A\right)=\frac{\mathbb{P}\left(B_{3} A\right)}{\mathbb{P}(A)} & =\frac{\mathbb{P}\left(B_{3}\right) \mathbb{P}\left(A \mid B_{3}\right)}{\left.\mathbb{P}\left(B_{1}\right) \mathbb{P}\left|\left(\mid B_{3}\right)+\mathbb{P}\left(B_{2}\right) P A P\right| B_{2}\right)+\mathbb{P}\left(B_{3}\right) \mathbb{P}\left(A\left(B_{3}\right)\right.} \\
& =(1 / 3) \cdot 1 \\
& =\frac{2}{3} .
\end{aligned}
$$

Suppose two events A and B really have nothing to do with each other. That doesn't mean they're disjoint; it means they have no influence on each other.
Eg. Flip a coin 3 times.
$A=\{$ the first toss is heads $\}$
$B=\{$ the second ts is tails $\}$

$$
\begin{aligned}
& A=\{H H H, H H T, \text { HTH, UT }\} \\
& B=\{H T H, H T T, T T H, T T T\}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}(A B)=\frac{2}{8}=\frac{1}{4} . \mathbb{P}(A)=\mathbb{P}(B)=\frac{4}{8}=\frac{1}{2} . \\
& \mathbb{P}(B \mid A)=\frac{\mathbb{P}(A B)}{\mathbb{P}(A)}=\frac{1 / 4}{1 / 2}=\frac{1}{2}=\mathbb{P}(B)
\end{aligned}
$$

Def: Two events A, B are (statistically) independent if $\mathbb{P}(A B)=\mathbb{P}(A) \mathbb{P}(B)$

Eg. . - An urn has 4 red and 7 blue balls.
Two balls are sampled $\$$ with replacement
$A=\left\{1^{s t}\right.$ ball is red $\}$ *wthent
$B=\left\{2^{\text {nd }}\right.$ ball is blue $\}$
Are A and B independent?
(a) Yes.
(b) No.
(c) Can't tell from the question.

