Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: $\xi 2.1-2.2$ HF. 1 due TONIGHT V
Next: $\quad\{2.2-2.3 \quad$ Labil due Monday, $10 / 07$
Screencast \& video available after each lecture @ podcast.ucsd. ed
Before / After slides now available on course webpage.
Lots of active discussion on Piazza.

Conditional Probability
Eg. Your friend rolls two fair dice, and asks you what is the probability the sum is 10 .

$$
\left[\Omega=\{(i, j): 1 \leqslant i, j \leqslant 6\} \quad A=\{i+j=10\}=\{(4,6),(5,5),(6,4)\} \therefore \mathbb{P}(A)=\frac{3}{36}-\frac{1}{12}\right]
$$

Before you answer, however, she reveals that the actual sum that came up was a two digit number. In light of this information, was your probability calculation correct?

$$
\text { "updated, } \begin{aligned}
\tilde{\Omega} & =\{\text { Sum has } 2 \text { digits }\} \\
& =\{1+j=10\} \cup\{i+j=11\}=\{i+j=12\} \\
& =\{(4,6),(5,5),(6,4),(6,5),(5,6),(6,6)\} \\
\tilde{\mathbb{P}}(A) & =\frac{\# \tilde{A}}{\# \tilde{\Omega}}=\frac{3}{6}=\frac{1}{2} \quad \tilde{A}=A \cap \tilde{\Omega}
\end{aligned}
$$

Conditional Probability
Moral: given information lie that an event B is known to have happened), we condition on B; we make B the new sample space.
We must modify events afterward so they're "in" B :

$$
\begin{aligned}
& \Omega \rightarrow B=\tilde{\Omega} \\
& \widetilde{F} \rightarrow \mathcal{F}_{B}=\{A B: A \in \mathcal{F}\}
\end{aligned}
$$

Problem: $\mathbb{P}(\widehat{\Omega})=\mathbb{P}(B)<1$

$\mathbb{P}(\mid B) \stackrel{\mathbb{P}}{=} \widetilde{\mathbb{P}}=\frac{\mathbb{P}}{\mathbb{P}(B)}$ (caveat: $\mathbb{P}(B) \neq 0$)
Def: Given an event B with $\mathbb{P}(B)>0$, we define the conditional probability of an event A given B as $\mathbb{P}(A \mid B)=\mathbb{P}(A B) / \mathbb{P}(B)$.
E.9.): © An urn contains 4 red balls and 6 blue balls. 3 are sampled, without replacement.
What is the probability that exactly two are red?

Suppose we somehow know a pribri that at least one red is sampled. What is the conditional probability that exactly two red balls are sampled?
$A=\{$ exactly 2 red $\} \quad B=\{$ at least one red $\}$

$$
\begin{aligned}
& \mathbb{P}(A \mid B)=\frac{\mathbb{P}(B A)}{\mathbb{P}(B)}=\frac{\mathbb{P}(A)}{\mathbb{P}(B)}=\frac{3 / 10}{5 / 6}=\frac{9}{25} \\
& \begin{array}{rl}
A B=A & \mathbb{P}\left(B^{c}\right)=\frac{\binom{4}{0}\binom{6}{3}}{\binom{10}{3}}=\frac{20}{120}=\frac{1}{6}, \quad \mathbb{P}(B)
\end{array}=1-\mathbb{P}\left(B^{C}\right) \\
& \\
& =5 / 6
\end{aligned}
$$

Recovering \mathbb{P} from $\mathbb{P}(\cdot \mid B)$
By definition, $\mathbb{P}(B \mid A)=\frac{\mathbb{P}(A B)}{\mathbb{P}(A)} ; \Rightarrow \mathbb{P}(A B)=\mathbb{P}(A) \mathbb{P}(B \mid A)$ "multiplication rule"
Can generalize: $\mathbb{P} / A B C)=\mathbb{P}(A B) \mathbb{P}(C \mid A B)=\mathbb{P}(A) \mathbb{P}(B \mid A) \mathbb{P}(C \mid A B)$
An urn contains 4 red balls and 6 blue balls. 2 are sampled, without replacement.
What is the probability that both are red?

$$
\begin{aligned}
R_{1}=\left\{1^{1+} \text { red }\right\} \quad \mathbb{P}\left(R_{1} R_{2}\right)= & \mathbb{P}\left(R_{1}\right) \mathbb{P}\left(R_{2} \mid R_{1}\right) \\
R_{2}=\left\{2^{\text {nd }} \text { rod }\right\} & (0.4)\left(\frac{3}{9}\right)=\frac{2}{15} \\
& \left(\text { old way: } \frac{\binom{4}{2}\binom{6}{0}}{\binom{10}{2}}\right)
\end{aligned}
$$

Two-Stage Experiments

* perform an experiment, measure a random outcome.
* perform a second experiment whose setup depends on the outcome of the first!
Eg.

$$
\begin{aligned}
\mathbb{P}(R) & =\mathbb{P}((R \cap I) \cup(R \cap \mathbb{I})) \\
& =\mathbb{P}(R I)+\mathbb{P}(R \mathbb{I}) \\
& =\mathbb{P}(I) \mathbb{P}(R \mid I)+\mathbb{P}(\mathbb{I}) \mathbb{P}(R \mid \mathbb{I}) \\
& =\frac{1}{2}\left(\frac{1}{3}\right)+\frac{1}{2}\left(\frac{2}{5}\right)=\frac{1}{6}+\frac{1}{5}=\left(\frac{11}{30}\right)
\end{aligned}
$$

Law of Total Probability
If $B_{1}, B_{2}, \ldots, B_{n}$ partition $\Omega\left(\right.$ disjoint, $\left.B_{1}, \ldots \nu B_{n}=\Omega, P\left(B_{j}\right)>0\right)$ then for any event A :

$$
\begin{aligned}
& \text { then for any event } A: \\
& \mathbb{P}(A)=\mathbb{P}\left(A B_{1} \cup A B_{2} \cup \cdots \cup A B_{n}\right)=\sum_{j=1}^{n} \mathbb{P}\left(A B_{j}\right) \\
&=\sum_{j=1}^{n} \mathbb{P}\left(B_{j}\right) \mathbb{P}\left(A \mid B_{j}\right)
\end{aligned}
$$

Eg. 90% of coins are (ai rn $\left.\begin{array}{c}9 \% \\ B_{1}\end{array}\right)$ are biased to come up heads (boo B2) B) 1% are biased to come up heads 80%. Bs Yon find a coirs on the street. How likely is it to come up heads?

$$
\begin{aligned}
\mathbb{P}(H) & =\mathbb{P}\left(B_{1}\right) \mathbb{P}\left(H \mid B_{1}\right)+\mathbb{P}\left(B_{2}\right) \mathbb{P}\left(H \mid B_{2}\right)+\mathbb{P}\left(B_{3}\right) \mathbb{P}\left(H \mid B_{3}\right) \\
& =(0.9)(50 \%)+(0.09)(60 \%)+(0.01)(80 \%)=0.512
\end{aligned}
$$

Subtler question:
90% of coins are fair, 9% are biased to come up heads 60%. 1% are biased to come up heads 80%.
Yon find a Cairo on the street. You toss it, and it comes up heads.
How likely is it that this Gin is heavily biased?

Eg. According to Forbes Magazine, as of April 10, 2019, there are 2208 billionaires in the world. 1964 of them are men.

