Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: §1.3-1.4
HW.O: double check! HF. 1 due FRIDAY, $10 \% 4$
Next: $\{2.1-2.2$
Lab, 1 due MoNDAY, $10 / 07$
Screencast \& video available after each lecture @ podcast.ucs d. ed
Before/After slides now available on course webpage.
Lots of active discussion on Piazza.

Combinatorics

* selecting k objects from among n, with replacement:
\#ways =
* selecting k objects from among n, withent replacement; order matters:
\#ways =
* selecting k objects from among n, without replacement; order doesn't matter:

$$
\# \text { ways }=\binom{n}{k}
$$

Sampling with Replacement (order doesn't matter)
Eg.) : (An urn contains 10 balls:
2 blue
3
5 red
Problem: 3 balls are chosen without replacement.

$$
\mathbb{P}(2,1 \text { red })
$$

What if $\# \Omega=\infty$?
Then we need a different notion of uniform.
Eg. A random real number is chosen in $[0,1]$.
(a) What is the probability it is $\geqslant 0.7$?
(b) What is the probability it is $=\frac{1}{2}$?

Eg.

An archery target is a dirk
50 cm in diameter.
A blue disk in the center is 25 cm in diameter.
A red disk in the center is 5 cm in diameter.
Given that you hit the target (randomly), what are the chances of hitting the blue disk? The red disk?

Decompositions
Eg. A fair coin is tossed 5 times. What is the probability that at least 3 tosses come up tails?

Eg. A fair die is rolled 4 times. What is the probability of at least one double?
$A=\{$ some number comes up at least two times \}
$A_{k}=\{k$ comes up at least two times $\}$
$A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5} \cup A_{6}$
$A_{k}^{m}=\{k$ cones up exactly m time 3$\}$
zillions of

$$
A_{1}=A_{1}^{2} \cup A_{1}^{3} \cup A_{1}^{4} \cup A_{1}^{5} \cup A_{1}^{6}
$$ scenarios

Question: Are all there events disjoint?

Sometimes, you cant avoid lack of disjoint ness se easily. You have fo take intersections into accent.
Notation: $A \cap B=\{$ all outcomes in both A and $B\}$
II
$A B$

$$
A \cup B=A B^{c} \cup A B \cup A^{c} B \leftarrow d B j \text { int }
$$

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)
$$

Principle of Inclusion / Exclusion
The probability of a union can be computed by adding the probabilities, then subtracting off the intersection (s) overcaunted. If you have more sets, you have to keep going and re-add back in pieces that you over-subtracted, ck.

Egg. 20% of the population own cats.
25% of the population own dogs.
5% of the population own both,
What is the probabality that a random person owns neither?

Monotonicity
If $A \subseteq B$ then $B=A \cup A^{C} B$ is a disjoint union

$$
\therefore \mathbb{P}(B)=\mathbb{P}(A)+\mathbb{P}\left(A^{C} B\right)
$$

(A) B

Eg 90\% of your friends like the xian long bay at Din Tai Jung. 80% of your friends like the xian long baa at Shanghai Saloon. What is the smallest possible proportion of your friends who like the xian long base at both restaurant's?

