Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: §1.3-1.4
HW.O: double check! HF. 1 due FRIDAY, $10 \% 4$
Next: $\{2.1-2.2$
Lab, 1 due MoNDAY, $10 / 07$
Screencast \& video available after each lecture @ podcast.ucs d. ed
Before/After slides now available on course webpage.
Lots of active discussion on Piazza.

Combinatorics

* selecting k objects from among n, with replacement:

$$
\text { \#ways }=n^{k}
$$

* selecting k objects from among n, withent replacement; order matters:

$$
\text { \#ways }=(n(n-1)(n-2) \cdots(n-k+1) \quad(k \leqslant n)
$$

* selecting k objects from among n, without replacement; order doesn't matter:

$$
\begin{aligned}
\text { \# ways }=\binom{n}{k}= & \frac{n(n-1) \cdots(n-k+1)}{k!} \\
& =\frac{n!}{(n-k)!k!}=\binom{n}{n-k}
\end{aligned}
$$

Sampling with Replacement (order doesn't matter)
Eg.) : (An urn contains 10 balls: $\rightarrow b_{1}, b_{2}$,

$$
\begin{aligned}
& 2 \text { blue } \quad b_{6} b_{7} b_{8} b_{9} b_{10} \\
& 3 \\
& 5 \text { red }
\end{aligned}
$$

Problem: 3 balls are chosen without replacement.

$$
\begin{aligned}
& \mathbb{P}(2,1 \text { red })
\end{aligned}
$$

$$
\begin{aligned}
& \text { ono mates } \\
& A=\{2 \text { are yollou, } 1 \text { red }\} \quad \# A=\binom{5}{1} \cdot\binom{3}{2} \\
& \therefore \mathbb{P}(A)=\frac{\binom{5}{1} \cdot\left(\frac{3}{2}\right)}{\binom{10}{3}}=\frac{15}{120}=\frac{1}{8}=12.5 \%
\end{aligned}
$$

What if $\# \Omega=\infty$?
Then we need a different notion of uniform.
Eg. A random real number is chosen in $[0,1]$.
(a) What is the probability it is $\geqslant 0.7$?
(b) What is the probability it is $=\frac{1}{2}$?
must define!
$(\Omega, \mathcal{F}, \mathbb{P})$
(a)

$$
\text { (a) } \begin{aligned}
& \mathbb{P}([0.7,1]) \\
= & 1-0.7=0.3 \\
\text { (b) } & \mathbb{P}\left(\left[\frac{1}{2}, \frac{1}{2}\right]\right) \\
& =\frac{1}{2}-\frac{1}{2}=0 .
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{P}\left([0,0.3) \cup\left(\frac{1}{2}, 0.96\right)\right) \\
&=\mathbb{P}([0,0,3))+\mathbb{P}\left(\left(\frac{1}{2}, 0,96\right)\right)=0.3+0.46 \\
&=0.76
\end{aligned}
$$

Eg.

An archery target is a dirk
50 cm in diameter.
A blue disk in the center is 25 cm in diameter.
A red disk in the center is 5 cm in diameter.
Given that you hit the target (randomly), what are the chances of hitting the blue disk? The red disk?

$$
\begin{aligned}
& \Omega=\text { target } \\
& \mathcal{F}=\{\text { subsets that have "area" }\} \quad \mathbb{A r e a}(A) \\
& \mathbb{P}(A)=\frac{\operatorname{Area}(\Omega)}{\operatorname{Ar})}
\end{aligned}
$$

Decompositions
Eg. A fair coin is tossed 5 times. What is the probability that at least 3 tosses come up tails?

$$
\begin{aligned}
A=\{\text { at least } 3 \text { tails }\}= & A_{3} \cup A_{4} \cup A_{5} \\
& A_{k}:=\{\text { exactly } k \text { tails }\}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{P}(A)= & \mathbb{P}\left(A_{3}\right)+\mathbb{P}\left(A_{4}\right)+\mathbb{P}\left(A_{5}\right) \\
& \uparrow \begin{array}{l}
\square \\
\square
\end{array} \square \square \square \\
& \uparrow
\end{aligned}
$$

$$
R \mathbb{P}\left(A_{5}\right)=\binom{s}{5} \frac{1}{2^{5}}
$$

$$
A_{4}: \text { \# Gufiguratrans }
$$

$P\left(A_{3}\right)=\binom{5}{3} \frac{1}{2^{5}} \uparrow \quad \uparrow \uparrow \uparrow$ $=\binom{5}{4}$

$$
\mathbb{P}\left(A_{4}\right)=\binom{5}{4} \cdot \frac{1}{2^{5}} .
$$

D

$$
\begin{aligned}
\mathbb{P}(A)=\frac{1}{2^{5}}\left(\binom{5}{3}+\binom{5}{4}+\binom{5}{5}\right)=\frac{1}{2^{5}}(1+5+10) & =\frac{16}{32} \\
& =50 \%
\end{aligned}
$$

Eg. A fair die is rolled 4 times. What is the probability of at least one double?
$A=\{$ some number comes up at least two times $\}$
$A_{k}=\{k$ comes up at least two times $\}$
$A=A_{1} \cup A_{2} \cup A_{3} \cup A_{4} \cup A_{5} \cup A_{6}$ not disjoint
$A_{k}^{m}=\{k$ canes up exactly m time 3$\}$
$A_{1}=A_{1}^{2} \cup A_{1}^{3} \cup A_{1}^{4} \cup A_{1}^{s} \cup A_{1}^{6}$

Question: Are all there events disjoint?

$$
\begin{aligned}
& 1=\mathbb{P}(\Omega)=\mathbb{P}(A)+\mathbb{P}\left(A^{C}\right) \\
& \left.\quad \therefore \mathbb{P}(A)=1-\mathbb{P} \mid A^{C}\right)=1-\frac{5}{18}=\frac{13}{18}
\end{aligned}
$$

Sometimes, you cant avoid lack of disjoint ness se easily. You have to take intersections into accent.
Notation: $A \cap B=\{$ all outcomes in both A and $B\}$
$A B$

$$
A \cup B=A B^{c} \cup A B \cup A^{c} B \leftarrow d B j \text { joint }
$$

$$
\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)
$$

Principle of Inclusion/Exclusion
The probability of a union can be computed by adding the probabilities, then subtracting off the intersections) overcuunted. If yen have more sets, you have to keep going and re-add back in pisces that you ooe-subtracted, eke.

$\mathbb{P}(A \cup B \cup C)$

$$
\begin{aligned}
= & \mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C) \\
& -\mathbb{P}(A B)-\mathbb{P}(A C)-\mathbb{P}(B C) \\
& +\mathbb{P}(A B C)
\end{aligned}
$$

Eg. 20% of the population own cats.
25% of the population own dogs.
5% of the population own both,
What is the probabality that a random person owns neither?
CD

$$
\begin{aligned}
& \mathbb{P}(C)=0.2 \\
& \mathbb{P}(D)=0.25 \\
& \mathbb{P}(C D)=0.05
\end{aligned}
$$

Monotonicity
If $A \subseteq B$ then $B=A \cup A^{C} B$ is a disjoint union

$$
\begin{aligned}
\therefore \mathbb{P}(B) & =\mathbb{P}(A)+\mathbb{P}\left(A^{C} B\right) \\
& \geqslant \mathbb{P}(A) \quad \geqslant
\end{aligned}
$$

Eg 90\% of your friends like the vigo long boo at Din Tai Jung. 80% of your friends like the xian long bay at Shanghai Saloon. What is the smallest possible proportion of your friends who like the xian long bay at both restaurant's?

