Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Homework 8 Due TODAY
Final Exam: Monday, Dec 9, 11:30a-2:30p
in REC GYM

* Bring Student ID
* Seat Assignment on Triton Ed (this weekend)
* 2 double-sided sheets of hand-written notes
* If possible, eat an early lunch.

Regrade requests (for final exam \& HW8) NEXT QUARTER.
It is your responsibility to make sure all your grades are in order BEFORE NEXT FRIDAY.

Please fill out your
CAPES T_{0}

1. Let X and Y be continuous random variables with joint density function

$$
f_{X, Y}(x, y)= \begin{cases}\frac{x}{2}+\frac{y}{4}, & 0 \leq x \leq 1,0 \leq y \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) (5 points) Compute $\mathbb{P}(X>2 Y)$.

1. Let X and Y be continuous random variables with joint density function

$$
f_{X, Y}(x, y)= \begin{cases}\frac{x}{2}+\frac{y}{4}, & 0 \leq x \leq 1,0 \leq y \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

(b) (5 points) What is the marginal density f_{X} of X ?

1. Let X and Y be continuous random variables with joint density function

$$
f_{X, Y}(x, y)= \begin{cases}\frac{x}{2}+\frac{y}{4}, & 0 \leq x \leq 1,0 \leq y \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

(c) (5 points) Are X and Y independent? Explain.
2. An urn contains 5 balls: two balls labeled 1, two balls labeled 2, and one ball labeled 3. You sample 2 balls from the bin, without replacement; the number on the first one is X, and the number on the second one is Y.
(a) (5 points) Compute the joint probability mass function of X and Y. (You may find it convenient to express it in the form of a chart.)
2. An urn contains 5 balls: two balls labeled 1, two balls labeled 2, and one ball labeled 3. You sample 2 balls from the bin, without replacement; the number on the first one is X, and the number on the second one is Y.
(b) (5 points) Compute the probability mass function of X and the probability mass function of Y.
2. An urn contains 5 balls: two balls labeled 1, two balls labeled 2, and one ball labeled 3. You sample 2 balls from the bin, without replacement; the number on the first one is X, and the number on the second one is Y.
(c) (5 points) Are X and Y independent? Justify your answer.
3. Let $U_{1}, U_{2}, \ldots, U_{n}, \ldots$ be independent, identically distributed random variables, each with the Uniform $[-2,2]$ distribution. Let $S_{n}=$ $U_{1}+U_{2}+\cdots+U_{n}$.
(a) (5 points) Compute $\mathbb{E}\left(S_{n}\right)$ and $\operatorname{Var}\left(S_{n}\right)$.
3. Let $U_{1}, U_{2}, \ldots, U_{n}, \ldots$ be independent, identically distributed random variables, each with the Uniform $[-2,2]$ distribution. Let $S_{n}=$ $U_{1}+U_{2}+\cdots+U_{n}$.
(b) (5 points) For any $\epsilon>0$, what can you say about

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\left|S_{n}\right|}{n^{2 / 3}} \geq \epsilon\right) ?
$$

4. Let T be the triangle in \mathbb{R}^{2} with vertices $(0,0),(0,1)$, and $(1,1)$ (including the interior). Suppose that $P=(X, Y)$ is a point chosen uniformly at random inside of T.
(a) (5 points) What is the joint density function of (X, Y) ? Use this to compute $\operatorname{Cov}(X, Y)$.
5. Let T be the triangle in \mathbb{R}^{2} with vertices $(0,0),(0,1)$, and $(1,1)$ (including the interior). Suppose that $P=(X, Y)$ is a point chosen uniformly at random inside of T.
(b) (5 points) Determine if X and Y are independent.
6. Suppose $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ are i.i.d. random variables with mean $\mathbb{E}\left(X_{j}\right)=0$ and variance $\operatorname{Var}\left(X_{j}\right)=1$. Determine the following limits with precise justifications.
(a) $\left(5\right.$ points) $\lim _{n \rightarrow \infty} \mathbb{P}\left(-\frac{n}{4} \leq X_{1}+\cdots+X_{n}<\frac{n}{2}\right)$
7. Suppose $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ are i.i.d. random variables with mean $\mathbb{E}\left(X_{j}\right)=0$ and variance $\operatorname{Var}\left(X_{j}\right)=1$. Determine the following limits with precise justifications.
(b) (5 points) $\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{1}+\cdots+X_{n}=0\right)$

Please fill out your CAPES W

And...
Sign up for my Winter 2020

* NEW COURSE * MATH 182 / DSC 155 Hidden Data in Random Matrices 5

