
MATH 180A : INTRO TO PROBABILITY
( FOR DATA SCIENCE)

www.math.ucsd.edu/ntkemp/18oA

Homework 8 Due TODAY

Final Exam : Monday , Dec 9 , 11:30a -2:3op

* Bring student ID
in REC Gym

* Seat Assignment on Triton Ed (this weekend)
* 2 double - sided sheets of hand - written notes
* If possible , eat an early lunch .

Regrade requests (for final exam of HW8) NEXT QUARTER
.

It is four responsibility to make sure all your grades are
in order BEFORE NEXT FRIDAY

.
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1. Let X and Y be continuous random variables with joint density function

fX,Y (x, y) =

(
x
2 +

y
4 , 0  x  1, 0  y  2

0, otherwise
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1. Let X and Y be continuous random variables with joint density function

fX,Y (x, y) =

(
x
2 +

y
4 , 0  x  1, 0  y  2

0, otherwise

(b) (5 points) What is the marginal density fX of X?
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1. Let X and Y be continuous random variables with joint density function

fX,Y (x, y) =

(
x
2 +

y
4 , 0  x  1, 0  y  2

0, otherwise

(c) (5 points) Are X and Y independent? Explain.
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2. An urn contains 5 balls: two balls labeled 1, two balls labeled 2, and one ball labeled 3. You sample 2 balls from the bin, without
replacement; the number on the first one is X , and the number on the second one is Y .

(a) (5 points) Compute the joint probability mass function of X and Y . (You may find it convenient to express it in the form of a chart.)
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2. An urn contains 5 balls: two balls labeled 1, two balls labeled 2, and one ball labeled 3. You sample 2 balls from the bin, without
replacement; the number on the first one is X , and the number on the second one is Y .

(b) (5 points) Compute the probability mass function of X and the probability mass function of Y .
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2. An urn contains 5 balls: two balls labeled 1, two balls labeled 2, and one ball labeled 3. You sample 2 balls from the bin, without
replacement; the number on the first one is X , and the number on the second one is Y .

(c) (5 points) Are X and Y independent? Justify your answer.
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3. Let U1, U2, . . . , Un, . . . be independent, identically distributed random variables, each with the Uniform[�2, 2] distribution. Let Sn =
U1 + U2 + · · ·+ Un.

(a) (5 points) Compute E(Sn) and Var(Sn).
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3. Let U1, U2, . . . , Un, . . . be independent, identically distributed random variables, each with the Uniform[�2, 2] distribution. Let Sn =
U1 + U2 + · · ·+ Un.

(b) (5 points) For any ✏ > 0, what can you say about

lim
n!1

P
✓
|Sn|
n2/3
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◆
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4. Let T be the triangle in R2 with vertices (0, 0), (0, 1), and (1, 1) (including the interior). Suppose that P = (X, Y ) is a point chosen
uniformly at random inside of T .

(a) (5 points) What is the joint density function of (X, Y )? Use this to compute Cov(X, Y ).
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4. Let T be the triangle in R2 with vertices (0, 0), (0, 1), and (1, 1) (including the interior). Suppose that P = (X, Y ) is a point chosen
uniformly at random inside of T .

(b) (5 points) Determine if X and Y are independent.
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5. Suppose X1, X2, . . . , Xn, . . . are i.i.d. random variables with mean E(Xj) = 0 and variance Var(Xj) = 1. Determine the following
limits with precise justifications.

(a) (5 points) lim
n!1

P
⇣
�n

4
 X1 + · · ·+Xn <

n

2

⌘
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5. Suppose X1, X2, . . . , Xn, . . . are i.i.d. random variables with mean E(Xj) = 0 and variance Var(Xj) = 1. Determine the following
limits with precise justifications.

(b) (5 points) lim
n!1

P(X1 + · · ·+Xn = 0)
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. .
.

Sign up for my
Winter 2020

* NEW COURSE *

MATH 182 / DSC 155
Hidden Data in

Random Matrices
S




