Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Homework 8 Due TODAY
Final Exam: Monday, Dec 9, 11:30a-2:30p
in REC GYM

* Bring Student ID
* Seat Assignment on Triton Ed (this weekend)
* 2 double-sided sheets of hand-written notes
* If possible, eat an early lunch.

Regrade requests (for final exam \& HW8) NEXT QUARTER.
It is your responsibility to make sure all your grades are in order BEFORE NEXT FRIDAY.

Please fill out your
CAPES T_{0}

1. Let X and Y be continuous random variables with joint density function

$$
f_{X, Y}(x, y)= \begin{cases}\frac{x}{2}+\frac{y}{4}, & 0 \leq x \leq 1,0 \leq y \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) (5 points) Compute $\mathbb{P}(X>2 Y) . \quad\{X>2 Y\}=\{(X, Y) \in T\} \leftarrow T=\{(x, y): x>2 y\} T$

$$
\begin{aligned}
& \left.\therefore \mathbb{P}(x>2 \psi)=\iint f_{x, y} \mid x, y\right) d x(d y \\
& =\int_{0}^{1 / 2} d y \int_{2 y}^{1} d x\left(\frac{x}{2}+\frac{y}{4}\right) \\
& =\left.\int_{0}^{112}\left(\frac{x^{2}}{4}+\frac{x y}{4}\right)\right|_{2 y} ^{1} d y \\
& =\int_{0}^{1 / 4}\left(\frac{1-2 y)^{2}}{4}+\frac{(1-2 y) y}{4}\right) d y
\end{aligned}
$$

$$
\begin{aligned}
=\frac{1}{4} \int_{0}^{1 / 2}\left(1-4 y^{2}+y-2 y^{2}\right) d y & =\left.\frac{1}{4}\left(y-2 y^{3}+\frac{1}{2} y^{2}\right)\right|_{9} ^{1 / 2} \\
& =\frac{1}{4}\left(\frac{1}{2}-2 \cdot\left(\frac{1}{2}\right)^{3}+\frac{1}{2} \cdot\left(\frac{1}{2}\right)^{2}\right)
\end{aligned}
$$

$$
=\frac{1}{4}\left(\frac{1}{2}-\frac{1}{8}\right)=\frac{3}{32} .
$$

1. Let X and Y be continuous random variables with joint density function

(b) (5 points) What is the marginal density f_{X} of X ?

$$
\begin{aligned}
& f_{X}(x)=\int_{\mathbb{R}} f_{X, Y}(x, y) d y
\end{aligned}
$$

$$
\begin{aligned}
& \text { x } \\
& =\int^{2}\left(\frac{x}{2}+\frac{y}{y}\right) d y \\
& =\left.\left(\frac{x y}{2}+\frac{y^{2}}{8}\right)\right|_{0=y} ^{2=y}=\frac{x \cdot 2}{2}+\frac{2^{2}}{8}=x+\frac{1}{2} .
\end{aligned}
$$

1. Let X and Y be continuous random variables with joint density function

$$
f_{X, Y}(x, y)=\left(\begin{array}{l}
\frac{x}{2}+\frac{y}{4}, \\
0 \leq x \leq 1,0 \leq y \leq 2 \quad \begin{array}{l}
0 \leq \\
\text { otherwise }
\end{array}
\end{array}\right.
$$

$$
\begin{aligned}
& \text { (c) (5 points) Are } X \text { and } Y \text { independent? Explain. }
\end{aligned}
$$

2. An urn contains 5 balls: two balls labeled 1, two balls labeled 2, and one ball labeled 3. You sample 2 balls from the bin, without replacement; the number on the first one is X, and the number on the second one is Y.
(a) (5 points) Compute the joint probability mass function $\mathrm{of} X$ and Y. (You may find it convenient to express it in the form of a chart.)

$$
\begin{aligned}
& \mathbb{P}(X=j, Y=k) \\
& =\mathbb{P}(Y=k \mid X=j) \mathbb{P}(X=j)
\end{aligned}
$$

$$
\{X=1\} \quad \mathbb{P}\left(Y_{2}| | X=1\right)=(14
$$

$$
\mathbb{P}(Y=21 \times=1)=2 / 4=12
$$

$$
P(v=3 \mid x=1)=(1 / 4)
$$

$\{X=3\} \quad \mathbb{P}(Y=3 \mid X=3)=0$
2. An urn contains 5 balls: two balls labeled 1, two balls labeled 2, and one ball labeled 3. You sample 2 balls from the bin, without replacement; the number on the first one is X, and the number on the second one is Y.
(b) (5 points) Compute the probability mass function of X and the probability mass function of Y.

$$
p_{x}=p_{T}
$$

2. An urn contains 5 balls: two balls labeled 1, two balls labeled 2, and one ball labeled 3. You sample 2 balls from the bin, without
replacement; the number on the first one is X, and the number on the second one is Y.
(c) (5 points) Are X and Y independent? Justify your answer.

No!

$$
\begin{aligned}
& \mathbb{P}(X=3, y=3)=0 \\
& \text { But } \mathbb{P}(X=3) \mathbb{P} \mid Y=3)=\frac{1}{5} \cdot \frac{1}{5}=\frac{1}{25}
\end{aligned}
$$

$$
E\left(u_{j}\right)=0=\frac{2+(-2)}{2}
$$

3. Let $U_{1}, U_{2}, \ldots, U_{n}, \ldots$ be independent, identically distributed random variables, each with the Uniform $[-2,2]$ distribution. Let $S_{n}=$
$U_{1}+U_{2}+\cdots+U_{n}$. (a) (5 points) Compute $\mathbb{E}\left(S_{n}\right)$ and $\operatorname{Var}\left(S_{n}\right)$.

$$
f_{u_{1}}(x)=\frac{1}{4} \|_{[-3,2]}
$$

$$
\begin{aligned}
& \mathbb{E}\left(S_{n}\right)=\mathbb{E}\left(U_{1}+U_{2}+\cdots+U_{n}\right)=\mathbb{E}\left(U_{1}\right)+\mathbb{E}\left(U_{2}\right)+\cdots+\mathbb{F}\left(U_{n}\right)=0 \\
& \operatorname{Var}\left(G_{n}\right)=\operatorname{Var}\left(U_{1}+U_{2}+\cdots+U_{n}\right)
\end{aligned}
$$

indepont

$$
\operatorname{Var}\left(u_{1}\right)+\operatorname{Var}\left(u_{2}\right) \cdots+\operatorname{Var}\left(u_{n}\right)=\frac{4}{3} n
$$

λ

$$
\begin{aligned}
& \operatorname{Var}\left(u_{1}\right)=\mathbb{E}\left(u_{1}^{2}\right)-\mathbb{H}\left(u_{1}\right)^{2} \\
& 0^{2} \\
& \int_{-2}^{2} x^{2}\left(\frac{1}{4}\right) d x=\left.\frac{1}{3} \frac{l^{3}}{4}\right|_{-2} ^{2}=\frac{2}{4} \frac{2^{3}}{3}=\frac{16}{3 \cdot 4}=\frac{4}{3}
\end{aligned}
$$

3. Let $U_{1}, U_{2}, \ldots, U_{n}, \ldots$ be independent, identically distributed random variables, each with the Uniform $[-2,2]$ distribution. Let $S_{n}=$
(b) (5 points) For any $\epsilon>0$, what can you say about

Chehyshov: $\mathbb{P}(|x-E(x)| \geqslant k \sigma(x)) \leqslant \frac{1}{k^{2}} \quad=\left(\frac{\sqrt{\frac{4}{3} b}}{q n^{2} / 3}\right)^{2}$

$$
\begin{aligned}
& \begin{array}{c}
\mathbb{P}\left(\left|S_{n}-\mathbb{E}\left(S_{n}\right)\right| \geqslant k \sigma\left(S_{n}\right)\right) \leqslant \frac{1}{k^{2}} \\
0 \\
\quad \sqrt{V_{0}\left(S_{n}\right)}=\sqrt{\Psi_{3} n}
\end{array} \\
& =\frac{\frac{4}{3} n}{\varepsilon^{2} n^{4 / 3}} \\
& \text { So } \quad \mathbb{P}\left(\left|S_{n}\right| \geqslant k \sqrt{\frac{L_{3}}{3^{n}}}\right) \leqslant \frac{1}{k^{2}} \text {. } \\
& \therefore \frac{k \sqrt{\frac{4}{3}}}{n^{2 / 3}}=\varepsilon \\
& \therefore \mathbb{P}\left(\frac{\left|S_{n}\right|}{n^{2} 3} \geqslant k \frac{\sqrt{\frac{\pi}{3 n}}}{n^{2 / 3}}\right) \leqslant \frac{1}{k^{2}} \\
& k=\frac{\varepsilon n^{2 / 3}}{\sqrt{\frac{4}{3} b}} \\
& \text { i, } \mathbb{P}\left(\frac{\left|S_{n}\right|}{n^{2} \pi} \geqslant \varepsilon\right) \\
& \leqslant \frac{\text { cost. }}{n^{1 / 3}} \text {. } \\
& \therefore \mathbb{P}\left(\frac{\left|S_{n}\right|}{n^{2} 3} \geq \varepsilon\right) \leqslant \frac{1}{\left(\frac{\left(\varepsilon^{2}\right)^{2} \sqrt{2}}{\sqrt{2} n}\right)^{2}} \\
& \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

4. Let T be the triangle in \mathbb{R}^{2} with vertices $(0,0),(0,1)$, and $(1,1)$ (including the interior). Suppose that $P=(X, Y)$ is a point chosen uniformly at random inside of T.
(a) (5 points) What is the joint density function of (X, Y) ? Use this to compute $\operatorname{Cov}(X, Y)$.

$$
\begin{aligned}
& \int_{0}^{(X, Y) \text { inform inT }} \begin{aligned}
f(x, y)(x, y) & =\frac{1}{\operatorname{Area}(T)} \mathbb{1}_{T}(x, y) \\
& =2 \|_{T}(x, y)
\end{aligned} \\
& \operatorname{Cov}(X, Y)=\mathbb{E}(X Y)-\mathbb{E}(X) \mathbb{E}(Y)=\frac{1}{4}-\frac{1}{3} \cdot \frac{2}{3}=\frac{1}{4}-\frac{2}{y}=\frac{1}{36} . \\
& \begin{aligned}
\mathbb{E}(X Y) & =\iint_{T} x y f_{(x, y)}(x, y) d r d y=2 \iint_{T} x y d x d y=\frac{1}{4}
\end{aligned} \\
& \mathbb{E}(X)=\iint_{T} x \cdot 2 d x d y \quad \mathbb{F}(Y)=\iint_{T} y \cdot 2 d x d y \\
& =\frac{1}{3} \quad=2 / 3
\end{aligned}
$$

4. Let T be the triangle in \mathbb{R}^{2} with vertices $(0,0),(0,1)$, and $(1,1)$ (including the interior). Suppose that $P=(X, Y)$ is a point chosen uniformly at random inside of T.
(b) (5 points) Determine if X and Y are independent.

$$
\begin{aligned}
& \text { No) They ax correlates: } \\
& \qquad \operatorname{Cov}(x, y)=\frac{1}{36} \neq 0 .
\end{aligned}
$$

5. Suppose $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ are i.i.d. random variables with mean $\mathbb{E}\left(X_{j}\right)=0$ and variance $\operatorname{Var}\left(X_{j}\right)=1$. Determine the following limits with precise justifications.
(a) $\left(5\right.$ points) $\lim _{n \rightarrow \infty} \mathbb{P}\left(-\frac{n}{4} \leq X_{1}+\cdots+X_{n}<\frac{n}{2}\right)$
6. Suppose $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ are i.i.d. random variables with mean $\mathbb{E}\left(X_{j}\right)=0$ and variance $\operatorname{Var}\left(X_{j}\right)=1$. Determine the following limits with precise justifications.
(b) (5 points) $\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{1}+\cdots+X_{n}=0\right)$

Please fill out your CAPES W

And...
Sign up for my Winter 2020

* NEW COURSE * MATH 182 / DSC 155 Hidden Data in Random Matrices 5

