Math 180 A: Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: $₹ 9.2-9.3$
Next: REVIEW

Lab 7 Due Wednesday, Dec 4
Homework 8 Due Friday, Dec 6.
Final Exam: Monday, Dec 9, 11:30a-2:30p in REC GYM

Reminder: Chebyshev's Inequality
For any random variable X with finite

$$
\begin{aligned}
& \mathbb{E}(x)=\mu \quad \operatorname{Var}(x)=\sigma^{2} \\
& \mathbb{P}(|x-\mu| \geqslant k \sigma) \leqslant \frac{1}{k^{2}}
\end{aligned}
$$

We proved this using the fact that \mathbb{E} is monotone:

$$
X \leq Y \Rightarrow \mathbb{E}(X) \leq \mathbb{E}(Y)
$$

Eg. Ramen Menya Ultra has, en average, 1000 customers/day, with a standard deviation of 15. Estimate the probability that today they will have between 956 and 1044 customers.
(Weak) Law of Large Numbers
Let $x_{1}, x_{2}, x_{3}, \ldots, x_{n}, \ldots$ be an infinite sequence of iid random variables, each with $\mathbb{F}\left(X_{j}\right)=\mu$ and $\operatorname{Var}\left(X_{j}\right)=\sigma^{2}$ finite.
Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then for any fixed $\varepsilon>0$,

Eg. The Large Hadron Gllider was built to detect and measures the mass of the Higgs Boson. Call the mass M.
For theoretical reasens, it is known that $M \leqslant 1.78 \times 10^{-23} \mathrm{~g}$.
How many trials do the LHC physicists need to do to estimate the correct mass (via sample mean) within $10^{-24} \mathrm{~g}$, with probability $\geq 95 \%$?

Strong Law of Large Numbers
Let $X_{1}, x_{2}, X_{3}, \ldots, x_{n}, \ldots$ be an infinite sequence of rid tandem variables each with $\mathbb{E}\left(X_{j}\right)=\mu$.
Let $\bar{X}_{n}=\frac{x_{1}+X_{2}+\cdots+x_{n}}{n}$. Then

The Law of Large Numbers says that if $X_{1}, X_{2}, X_{3}, \ldots$ are cid with mean μ, and $S_{n}=X_{1}+\cdots+X_{n}$, then $\frac{S_{n}}{n} \rightarrow \mu$

Central Limit Theorem
Let $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ be fid random variables with $\mathbb{E}\left(X_{j}\right)=\mu, \operatorname{Var}\left(X_{j}\right)=\sigma^{2}$. Then , and for $-c<a \leqslant b<c \infty$,

Proof. Let $Y_{n}=\left(S_{n}-n \mu\right) / \sigma \sqrt{n}$. We will show that

$$
M_{Y_{n}}(t) \longrightarrow M_{N(0,1)}(t)=e^{t^{2} / 2} \text { for all } t \in \mathbb{R} \text {. }
$$

Rate of Convergence in CLT
Theorem (Berry-Esseen, 1941-42)

$$
\left|\mathbb{P}\left(\frac{S_{n}-n \mu}{\sigma \sqrt{n}} \leq x\right)-\Phi(x)\right| \leqslant \frac{3 \mathbb{E}\left[\left|x_{1}-\mu\right|^{3}\right]}{\sigma \sqrt[3]{n}}
$$

Eg. What does the p.d.f. of a Poisson (n) r.v. look like for lane n ?

