Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: $₹ 8.3-8.4,9.2$
Next: $\& 9.3$
Homework 7 Due TONIGHT?
Lab 7 Due Wednesday, Dec 4
Homework 8 Due Friday, Dec 6.
Final Exam: Monday, Dec 9, I1:30a-2:30p in REC GYM

Flashback to Math 20C
Given two vecters $\underline{v}, \underline{w}$ in \mathbb{R}^{n}, their dot product is

$$
\underline{v} \cdot \underline{W}=
$$

It is a positive bilinear form:
(1) $(a \underline{u}+b \underline{v}) \cdot \underline{w}$
(2) $v \cdot(a u+b w)$
(3) $\underline{v} \cdot \underline{v}$

The length ${ }^{2}$ of a vector is $\|v\|^{2}$
Two vectors are orthogonal if
Cauchy-Schwarz Inequality: $|\underline{v} \cdot \underline{w}|$

The Geometry of Random Variables
Dot product \leadsto Covariance $\operatorname{Cov}(X, Y)=\mathbb{E}((X-\mathbb{E}(X))(Y-\mathbb{E}(Y)))$.
(Almost) positive bilinear form
(1) $\operatorname{Cov}\left(a X_{1}+b X_{2}, Y\right)$
(2) $\operatorname{Cov}\left(X, a Y_{1}+b Y_{2}\right)$
(3) $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$

Orthogonal $\leadsto \operatorname{Cov}(X, Y)=0$ uncorrelated
Length ${ }^{2} \longrightarrow \operatorname{Var}(X)$
"Angles" \longrightarrow

Eg. (X, Y) uniformly distributed on the triangle

$$
\{(x, y): x, y \geqslant y, x+y \leq 1\}
$$

Moment Generating Function Revisited
Suppose $X_{y} Y$ are independent, and $M_{X}, M_{Y}<\infty$ on an interval containing 0 . Then

$$
M_{X+Y}(t)
$$

Eg. $X \sim \operatorname{Poisson}(\lambda), \quad Y \sim \operatorname{Poisson}(\mu) \quad$ independent

$$
M_{X}(t)=e^{\lambda\left(e^{t}-1\right)} \quad M_{Y}(t)=e^{M\left(e^{(}-1\right)}
$$

Eg. $\quad X \sim \mathcal{N}\left(\mu_{1}, \sigma_{1}^{2}\right) \quad Y \sim \mathcal{N}\left(\mu_{2}, \sigma_{2}^{2}\right) \quad$ independent

Reminder: Chebyshev's Inequality
For any random variable X with finite

$$
\begin{aligned}
& \mathbb{E}(x)=\mu \quad \operatorname{Var}(x)=\sigma^{2} \\
& \mathbb{P}(|x-\mu| \geqslant k \sigma) \leqslant \frac{1}{k^{2}}
\end{aligned}
$$

We proved this using the fact that \mathbb{E} is monotone:

$$
X \leq Y \Rightarrow \mathbb{E}(X) \leq \mathbb{E}(Y)
$$

Eg. Ramen Menya Ultra has, en average, 1000 customers / day, with a standard deviation of 15. Estimate the probability that today they will have between 956 and 1044 customers.
(Weak) Law of Large Numbers
Let $X_{1}, X_{2}, X_{3}, \ldots, X_{n}, \ldots$ be an infinite sequence of iid random variables, each with $\mathbb{E}\left(X_{j}\right)=\mu$ and $\operatorname{Var}\left(X_{j}\right)=\sigma^{2}$ finite.
Let $S_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Then for any fixed $\varepsilon>0$,

Eg. The Large Hadron Gllider was built to detect and measures the mass of the Higgs Boson. Call the mass M.
For theoretical reasens, it is known that $M \leqslant 1.78 \times 10^{-23} \mathrm{~g}$.
How many trials do the LHC physicists need to do to estimate the correct mass (via sample mean) within $10^{-24} \mathrm{~g}$, with probability $\geq 95 \%$?

Strong Law of Large Numbers
Let $X_{1}, x_{2}, X_{3}, \ldots, x_{n}, \ldots$ be an infinite sequence of rid tandem variables each with $\mathbb{E}\left(X_{j}\right)=\mu$.
Let $\bar{X}_{n}=\frac{x_{1}+X_{2}+\cdots+x_{n}}{n}$. Then

