Math $180 A:$ Intro to Probability (for Data Science)
www, math. ucsd.edu/~tkemp/180A
Today: $\{6.3,8.1$
Next: $\quad \oint 8.2-8.4$

Lab 6 Due TONIGHT
Homework 7 Due Wednesday, Nov 27

Joint Distributions \& Independence
Suppose $X=\left(X_{1}, \ldots, X_{n}\right)$ is jointly continuous. Then x_{1}, \ldots, x_{n} are independent of $f_{\underline{x}}\left(x_{1}, \ldots, x_{n}\right)=f_{x_{1}}\left(x_{1}\right) \ldots f_{x_{n}}\left(x_{n}\right)$.

$$
(\Longrightarrow)
$$

Eg. Multivariate standard normal $\frac{1}{(2 \pi)^{n / 2}} e^{-1\|\geq\|^{2} / 2}$

$$
=\left(\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}\right) \cdots\left(\frac{1}{\sqrt{2 \pi}} e^{-x_{n}^{2} / 2}\right)
$$

Since the joint density is a product of single-variable densities, the Components of the random vector are independent, with those densities as marginals:

Q: S'pose $\underset{\sim}{X}$ is uniform on the triangle $\left(X^{\prime \prime}, Y\right)$ Are X, Y independent?

Example. Suppose $X \sim E x p(\lambda), Y \sim \operatorname{Exp}(\mu)$, and X, Y independent. Find the distribution of $\min (X, Y)$.

Theorem Suppose $\underset{x}{x}=\left(x_{1}, \ldots, x_{n}\right)$ is a random vector, with x_{1}, \ldots, x_{n} independent.
For any functions $g_{1}, g_{2}, \ldots, g_{n}: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left(g_{1}\left(X_{1}\right) g_{2}\left(X_{2}\right) \cdots g_{n}\left(X_{n}\right)\right)=\mathbb{E}\left(g_{1}\left(X_{1}\right)\right) \cdot \mathbb{E}\left(g_{2}\left(X_{2}\right)\right) \cdots \cdot \mathbb{E}\left(g_{n}\left(X_{n}\right)\right)
$$

In particular, $\mathbb{E}\left(X_{1} X_{2} \cdots X_{n}\right)=\mathbb{E}\left(X_{1}\right) \mathbb{E}\left(X_{2}\right) \cdots \mathbb{E}\left(X_{n}\right)$.

Actually, the last theorem is inf
\rightarrow Suppose we know

$$
\mathbb{E}\left(g_{1}\left(X_{1}\right) g_{2}\left(X_{2}\right) \cdots g_{n}\left(X_{n}\right)\right)=\mathbb{E}\left(g_{1}\left(X_{1}\right)\right) \mathbb{E}\left(g_{2}\left(X_{2}\right)\right) \cdots \mathbb{E}\left(g_{n}\left(X_{n}\right)\right)
$$

for all functions $g_{1}, g_{2}, \ldots, g_{n}$

Convolution
Let X, Y be independent random variables. What can we say about the distribution of $X+Y$?

The Convolution of two prob. densities is $(f * g)(t)$

Eg. $X, Y \sim$ Exp (λ), independent. Find f_{X+Y}.
E.g. $\quad X, Y \sim U_{n i} f([0,1])$, independent.

We can new come back to questions about sums of random variables - in the context of their joint distribution.

Let X, Y be two (let's say discrete) random variables. $\mathbb{E}(X+Y)$

Theorem: For any random variables $X_{1}, X_{2}, \ldots, X_{n}$,

$$
\mathbb{E}\left(x_{1}+\cdots+x_{n}\right)
$$

Eg. $S \sim \operatorname{Bin}(h, p)$.
This means $S=X_{1}+X_{2}+\cdots+X_{n}$ where $X_{1}, \ldots, X_{n} \sim \operatorname{Ber}(p)$

A binomial is a sum of Bernoullis (indicator r.v.'s). Lots of problems can be solved when we can express desired events in terms of sums of indicators.
Egg. Suppose we put 200 balls randomly into 100 boxes. What is the expected number of empty boxes?

Eg. Your favorite cereal (chocolate frosted sugar bombs) comes with a Pokemon figurine. There are 20 to collect. What is the expected number of boxes you need to buy to collect them all?

