
MATH 180A: INTRO TO PROBABILITY (FOR DATA SCIENCE)

www.math.ucsd.edu/~tkemp/180Å

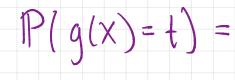
Lab 5 due TONIGHT by 11:59pm HW 6 due Friday (Nov 15) by 11:59pm Midterm 2: Next Wednesday (CENTR 101) covering Chapters 3-6.

Why Sheuld I Care About MX(+)?

Theorem: Suppose Mx(t) < co for all t in some neighborhood

Then the function MX uniquely determines the distribution of X.

(I.e. you can recover Fx from Mx.)


Fx, fx, px, Mx different tools to use in different contexts.

Let X~N(0,1).

Question: what is the distribution of X²? Ly To begin: which tool should we use? F_{X²}? f_{X²}? P_{X²}? M_{X²}?

Eg. Toss a fair die, yielding Xe {1,2,3,4,5,6}. What is the probability distribution of IX-31?

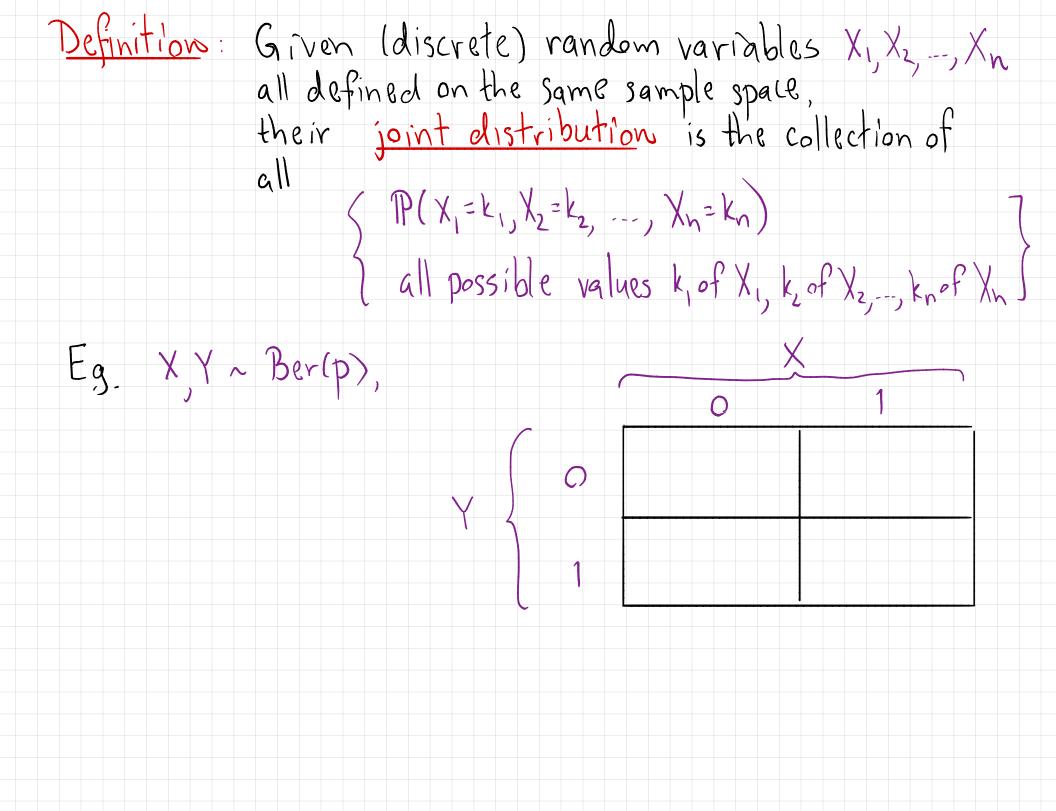
In general: if x is discrete, so is g(x), and

Important Example

Let X be a random variable. What is the distribution of $Y = F_X(X)$?

Question: How does a computer generate a N(91) random Variable?

To begins: we assume there is a way to produce a U~ Unif([0,1]) random sample.


Eq. The CDF of $Exp(\lambda)$ is $F(t) = \begin{cases} 0, t < 0 \\ 1 - e^{-\lambda t}, t \ge 0 \end{cases}$

0

Question

Suppose X and Y are both Ber(p) random variables. What is P(X=Y)?

- $(a) p \cdot p + (1-p) \cdot (1-p)$
- (b) p(1-p) + (1-p)p
- (C) (C)
- (d) 1
- (e) Not enough information.

Recovering X; from X = (X1, X2, --, Xn): Marginals

Suppose we know PX(K) for all K= (K, K2, --, Kn).

How can we find Px, (t)?