Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180 A
Today: $\{1.2-1.3$
HW.O due TONIGHT!
HF. 1 due FRIDAY, 10104°
Next: $\{1.4-2.1$
Lab, 1 due MoNDAY, $10 / 07$
Sections/Labs:
$\mathrm{BO1}, \mathrm{BO2}, \mathrm{BO} 3, \mathrm{BO} 4:$
CENTR 207 \rightarrow ARC 117
BOL, BOG: DSSIL28A \rightarrow CS 115
Mathematical thinking

Probability Space $\underset{\nearrow}{\Omega}, \underset{\uparrow}{\Omega}, \underset{\Omega}{\mathbb{F}})$
Determined by the \qquad being \qquad
Key property: if $\underbrace{\left.\left.A_{1}, A_{2}, A_{3}, \ldots \text { are disjoint }\binom{A_{i r} A_{j}}{i \neq j}=\phi\right), ~\right)}_{\in \mathcal{F}}$
then $\mathbb{P}\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots\right)=\sum_{j} \mathbb{P}\left(A_{j}\right)$
Important special case: if $\# \Omega<\infty$ then

$$
\Omega=\left\{\omega_{1}, \omega_{2}, \omega_{3}, \ldots, \omega_{n}\right\}
$$

the singleton sets $\left\{\omega_{1}\right\},\left\{\omega_{2}\right\}, \ldots,\left\{\omega_{n}\right\}$ are disjoint

$$
\begin{aligned}
\therefore & \mathbb{P}(A)= \\
& A=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}
\end{aligned}
$$

Uniform Probability Measwe (Sampling)
If Ω is finite, the uniform probability measwe is defined by:

For each $\omega \in \Omega, \mathbb{P}(\omega)=$
\Rightarrow For any event $A, \mathbb{P}(A)=$
This means calculating probabilities in such models is tantamount to \qquad
Egg. A fair die is cast 2 times. What is the probability that the sum is 4?

Eg. A fair coin is tossed 3 times.
$A=$ \{at least two tails\}
$B=\{$ exactly two tails $\}$

Think Pair Share
There are 10 people on a committee. How many different ways are there to select a subcommittee of 4 people?
(a) $10 \cdot 10 \cdot 10 \cdot 10=10^{4}=10,000$
(b) $10 \cdot 9 \cdot 8 \cdot 7=5,040$
(c) $\binom{10}{4}=\frac{10 \cdot 9 \cdot 8 \cdot 7}{4!}=210$
(d) $\frac{10!}{4!}=151,200$

Combinatorics
A collection of labeled balls $\{1,2, \ldots, n\}$ are in on urn. k are taken out one by one

* with replacement, or
* without replacement (k)
\rightarrow They are lined up
* in the order they came out, or

How many ways?

* disregarding order.
* with replacement :
* without: $\left\{\begin{array}{l}\text { b ordered: } \\ \text { not: }\end{array}\right.$

Sampling with Replacement
Toss a fair coin n times; record a statistic observing \# H vs. HT.
Egg. $n=10, \mathbb{P}\{$ add rolls are all $H\}$.

Sampling without Replacement (order matters)
$\left.)^{(}\right)_{(}($There are 6 labeled balls in an urn. 3 are removed in sequence (without replacement), and lined up in order. What is the probability that the first two are $(3,6)$?

Sampling with Replacement (order doesn't matter)
Eg.) : (An urn contains 10 balls:
2 blue
3
5 red
Problem: 3 balls are chosen without replacement.

$$
\mathbb{P}(2,1 \text { red })
$$

What if $\# \Omega=\infty$?
Then we need a different notion of uniform.
Eg. A random real number is chosen in $[0,1]$.
(a) What is the probability it is $\geqslant 0.7$?
(b) What is the probability it is $=\frac{1}{2}$?

Eg.

An archery target is a dirk
50 cm in diameter.
A blue disk in the center is 25 cm in diameter.
A red disk in the center is 5 cm in diameter.
Given that you hit the target (randomly), what are the chances of hitting the blue disk? The red disk?

