Math 180 A: Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: $\& 4.6$
Next: $\quad\{5.1-5.2$

Lab 4 due TONIGHT by 11:59 pm
HW4 due Friday (Nov 8) by $11: 59$ pm
\longrightarrow Error in problem statement of Exercise 4.40: the exact probability is $\doteq 0.00327556$

$$
\neq 0.000949681
$$

Li-Tien the lemur hangs out at Turtle Rock all day. He observes that cars pass by rarely, randomly, on average every 30 minutes.
He marks the times they come by on a number line:

Poisson Process
A Caisson precess of rate $\lambda>0$ is a collection of distinct random points in $[0, \infty)$ with the following properties:
(1) For any bounded interval $(a, b] \quad(0 \leqslant a<b<\infty)$ the number

$$
N((a, b]):=\#\{\text { points in }(a, b)\} \sim \operatorname{Poisson}(\lambda(b-a))
$$

(2) For any non-averlapping intervals $I_{1}=\left(a_{1}, b_{1}\right], \ldots, I_{k}=\left(a_{k}, b_{k}\right)$, the random variables $N\left(I_{1}\right), N\left(I_{2}\right), \ldots, N\left(I_{k}\right)$ are independent.
Useful notation: $N_{t}=N((0, t))$. Then $N((a, b))=$
$\left(N_{t}\right)_{t \geqslant 0}$ is an example of a stochastic process.

Special kind of stochastic process, with independent increments. (Sometimes called a Levy process.)

Not easy to achieve.
family of random variables indexed by time; usually with nice properties relating the distributions at different times. (MATH 180B/C)

Theorem: Let $X \sim \operatorname{Poisson}(\lambda)$ and $Y \sim \operatorname{Poisson}(\mu)$.
If $X_{y} Y$ are independent, then

$$
X+Y \sim
$$

Proof: Think about bionomials (of the same success rate).

Example: Customers arriving at the Art of Espresso in the afternoon arrive according to a Poisson precess with rate $20 /$ hour.
(a) What is the probability no one comes between $2 p m$ and $2: 15 p m ?$
(b) What is the probability that 2 customers come between 2 pm and 2:15pm, and 5 custame B come between 2:15pm and $2: 20 \mathrm{pm}$?

Let $\left(N_{t}\right)_{t \geqslant 0}$ be a Poisson process of intensity $\lambda>0$.
Let T be the time of the first jump (i se first customer /car / etc.)

What is the distribution of T ? Ie. find its CDF.

Constant Renewal
Let $\left(N_{t}\right)_{t \geqslant 0}$ be a Poisson process of intensity $\lambda>0$. Fix some $t_{0} \geq 0$.
Define a new process $M_{t}=N_{t}-N_{t_{0}}$. What kind of process is it?

Example: In a Poisson process of intensity λ, what is the distribution of the time interval between the 999 th event and the $1000^{\text {th }}$?

How about $T_{2}=$ time of second jump?

