Math 180 A: Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: $\S 4.4-4.5$
Next: $\quad \oint 4.6$

Lab 4 due Wednesday (Nov 6) by 11:59 pm HW 5 due Friday (Nov 8) by 11:59 pm

Poisson vs. Normal Approximation - Quantitative
Theorem. Let

$$
\begin{aligned}
& S_{n} \sim \operatorname{Bin}(n, p) \\
& X \sim P_{\text {oisson }}(n p) \\
& Y \sim \mathcal{N}(0,1)
\end{aligned}
$$

For any subset $A \subseteq \mathbb{N}$,

$$
\int \begin{aligned}
& \text { if } p=\frac{\lambda}{n^{\circ 5 s}}(\lambda>0) \\
& n p^{2}=h\left(\frac{\lambda}{\left.n_{0}\right)^{2}}\right)^{2}=\frac{\lambda}{n^{\prime 2}}
\end{aligned}
$$

$$
\underset{\substack{\rightarrow \rightarrow \infty \\ \rightarrow \infty}}{ }
$$

$O T O H$, for any $x \in \mathbb{R}$,

Upshot: if $n p^{2}$ is small, use Poisson Approximation.
if up (1-p) is quite large, use Normal Approximation.

Beyond independent trials:

* The normal approximation breaks down gickly if the trials are dependent.
* The Poisson approximation holds up well under "weak dependence"

Example. A factory experiences 3 accidents per month, on average. What is the probability there will be 3 accidents this month?
$X=$ \# accidents in a grison month.

$$
X \sim P_{\text {Bison }}(\lambda)
$$

$$
3=\mathbb{E}(x)=\lambda
$$

$$
\begin{aligned}
& \mathbb{P}(x=3)=e^{-3} \frac{3^{3}}{3!}=22.4 \% \\
& \mathbb{P}(x=2)=e^{-3} \frac{3^{2}}{2!}=22.4 \%
\end{aligned}
$$ by a Poisson

$$
\frac{3^{3}}{3!}=\frac{3^{2} \cdot 2}{3 \cdot 2-1}=\frac{3^{2}}{2!}
$$

Wait Times
Question: You're tossing a fair die until you get a 6 . It's been 12 tosses already, but no 6 '3 30 far. The time you have to wait until the first 6 from now is
\longrightarrow (a) Less than
(b) The same as
(c) Greater than
the time you would wait from the start.
"Gamble's Fallacy"

Time of first success $T \sim \operatorname{Geom}(p)$.

$$
\begin{aligned}
& \mathbb{P}(T>t)=\sum_{k=t+1}^{\infty}(1-p)^{k-1} p=p(1-p)^{t} \sum_{l=0}^{\infty}(1-p)^{l}=k \cdot(1-p)^{t} \cdot \frac{1}{1-(1-p)} \\
& F_{T}(t)=\mathbb{P}(T S t)=1-(1-p)^{t}
\end{aligned}
$$

Given that we've waited longer than t, what is the probability that well have to wait more than s more?

$$
\begin{aligned}
\left.=\frac{\mathbb{P}(T>t+s}{\mathbb{P}(T>t)} T>t\right) \leftarrow=\frac{\mathbb{P}(T>t+s)}{\mathbb{P}(T>t)} & =\frac{(1-p)^{+s}}{(1-p)^{t}} \\
& =\frac{(1-p)^{+}(1-p)^{s}}{(1-p)^{t}} \\
& =(1-p)^{s}
\end{aligned}
$$

$$
=\mathbb{P}(T>S)
$$

Continuous Wait Times
In the real world, most wait times are continuous random variables.
Eg. After a lull, the arrival time of the first customer at a post office.
Eg. The time until a radioactive particle decays.
These wait times are continuous, but have the same defining memoryless property:
<<< (t) $\mathbb{P}(T>t+s)=\mathbb{P}(T>s) \mathbb{P}(T>t)$
Set $\mathbb{P}(T>t)=G(t)$. Thus $G(t+s)=G(t) G(s)$
Theorem: If $G: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is ant. differentiable function satisfying $(*)$, then for some $a \in \mathbb{R}$,

$$
G(t)=e^{a t}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
e^{a(+k)} \\
=e^{a t} e^{a s} \\
\end{array}\right)
\end{aligned}
$$

Proof: $\quad \frac{\partial}{\partial s} G(t+s)=\frac{\partial}{\partial s}[G(t) G(s)]$

$$
\begin{array}{ccc}
\frac{d}{d s}(t+s) & G^{\prime}(t+s) & =G(t) G^{\prime}(s) \\
\vdots & \downarrow & \text { Ls } s \downarrow 0 . \\
G^{\prime}(t) & =\underbrace{G^{\prime}(0)} G(t) & G^{\prime}(t)=a G(t) \\
\therefore C^{2}=C & C=0 & \Rightarrow G(t)=C e^{a t} \\
C e^{a(t+r)}=G(t+s)=G(t) G(s)
\end{array}
$$

New, if $G(t)=\mathbb{P}(T>t)=1-\mathbb{P}(T \leqslant t)$, we get $=c l^{a t} \cdot c e^{\text {as }}$

$$
F_{T}(t)=\mathbb{P}(T \leqslant t)=1-G(t)=1-e^{a t} \rightarrow 1 \text { as } t \rightarrow \infty=c^{2} e^{a t t}
$$

Definition: The exponential distribution with parameter $\lambda>0$ is given by CDF

$$
F(t)=\left\{\begin{array}{cl}
1-e^{-\lambda t}, & t \geqslant 0 \\
0, & t<0
\end{array} \quad f(t)=\left\{\begin{array}{cl}
\lambda e^{-\lambda t} & t \geqslant 0 \\
0 & t<0
\end{array}\right.\right.
$$

Mean and Variance of $T \sim \operatorname{Exp}(\lambda)$

$$
\begin{aligned}
& \mathbb{E}(T)=\int_{0}^{\infty} t f_{T}(t)=\int_{0}^{\infty} t \cdot \lambda e^{-\lambda t} d t=\operatorname{CALCULUS}=\frac{1}{\lambda} \\
& \operatorname{Var}(T)=\frac{1}{\lambda^{2}} \text { (similar calculation) }
\end{aligned}
$$

Eg. The average phone call is 5 minutes in length. What is the probability your next phone call will be longer than 3 minutes?

$$
\begin{aligned}
& 3 \text { minutes? } \quad \frac{1}{\lambda}=\mathbb{E}(T)=5 \\
& \quad T \sim \operatorname{Exp}(\lambda), \int_{3}^{0} \frac{1}{5} e^{-\frac{1}{5} t} d t=\left.\left(-e^{-\frac{t}{5}}\right)\right|_{l=3} ^{t=9}=e^{-\frac{3}{5}}=54,906 \\
& \therefore \mathbb{P}(T>3)=e^{-x / s}=e^{-\lambda x} \\
& \quad \mathbb{P}(T>x)=
\end{aligned}
$$

Eg. On a forest road, cars come by Turtle Rock on average every 30 minutes. Tianyi the Turtle needs 10 minutes to cross the road. What is the probability she can cross safely?
$T=$ arrival tame of nut car, $T \sim E_{x p}\left(\frac{1}{30}\right)$

$$
\mathbb{P}(T>10)=e^{-\frac{1}{30} \cdot 10}=e^{-\frac{1}{3}} \div 71.7 \%
$$

Just before she starts to cross, Li-Tien the lemur tells her he's been hanging around for over 20 minutes and no cars have come by. Does this change Tianyi's mind about how safe it is to cross?

$$
\mathbb{P}(T>20+10 \mid T>20)=\mathbb{P}(T>10)=71.7 \%
$$

