Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: $\{4.3-4.4$
Next: $\oint 4.5$
HW4 due TONIGHT by $11: 59 \mathrm{pm}$
Lab 4 due next wednesday (Nov 6) by 11:59 pm

Example
Flip a fair coin n times. How does

$$
\mathbb{P}\left(\frac{\text { H Heads }}{n} \geqslant 50.01 \%\right)
$$

behave as $n \rightarrow \infty$?

Suppose after 10,000 flips, there are 5,001 Heads. should we doubt that the Gin is really fair?
What if, after 1,000,000 flips, there are 500, 100 Heads. Now how confident should we be that the coin is really fair?

Confidence
Suppose we have a cain that is biased by some unknown amount;

$$
X \sim \operatorname{Ber}(p) \sim \text { unknown } p!
$$

Hew can we figure out what p is?
Use the law of large numbers: $p=\lim _{n \rightarrow \infty} \frac{S_{n}}{w}$
We cant actually wait around for $n \rightarrow \infty$. Instead, we estimate

$$
p \approx \hat{p}:=\frac{S_{n}}{n} \text { for some large } n \text {. }
$$

The question is: how good an estimate is this for given n ? Or, turning it around: how big must you take n to get an estimate of a certain accuracy?

A Maximum Likelihood Estimate
want to find n large enough that (with $\hat{p}=S_{n} / n$)

$$
\mathbb{P}(|\hat{p}-p|<\varepsilon) \geqslant \text { (high probability) }
$$

chosen tolerance

$$
\mathbb{P}(|\hat{p}-p|<\varepsilon) \approx 2 \Phi(\varepsilon \sqrt{n} / \sqrt{p(1-p)})-1 .
$$

Conclusion: $\mathbb{P}(|\hat{p}-p|<\varepsilon) \underset{(\approx)}{\geqslant 2 \Phi}(\quad)-1$.

Example: How many times should we flip a coin, biased an unknown (of the Beast) amount p, so that the estimate $\hat{p}=S_{n} / n$ is within a tolerance of 0.05 of the true value p, with probability $\geqslant 99 \%$?

Confidence Intervals
Turning this around: if we cant control n, we would like b say how accurate the sample mean is as an estimate of the true mean, for a given number n of samples.

Eg. A coin (of unknown bias p) is tossed 1000 times. 450 Heads come up. Within what tolerance can we say we know the true value of p with probability $\geqslant 95 \%$?

If an experiment is repeated in many independent trials, and the preceding (normal approximation) estimates yield

$$
\mathbb{P}(|\hat{p}-p|<\varepsilon) \geqslant 95 \%
$$

we say $[\hat{p}-\varepsilon, \hat{p}+\varepsilon]$ is the 95% confidence interval for p.
The same statement might be given as " $p=\hat{p}$ with margin of error ε
 (95 times out of $10 n$)".

Pol conducted Oct 25-3e of 439 Iowa Democratic cancusgoers.

Margin of error:

Poisson Approximation

$$
S_{n} \sim \operatorname{Bin}(n, \lambda / n): \quad \lim _{n \rightarrow \infty} \mathbb{P}\left(S_{n}=k\right)=e^{-\lambda} \frac{\lambda^{k}}{k!}
$$

Quantitative Bound:
Theorem: If $X \sim \operatorname{Bin}(n, p)$ and $Y \sim \operatorname{Poisson}(n p)$, for any subset $A \subseteq \mathbb{N}$

$$
|\mathbb{P}(X \in A)-\mathbb{P}(Y \in A)| \leqslant n p^{2}
$$

Upshot: if $n p^{2}$ is small, use Poisson Approximation. if $n p(1-p)$ is big, use Normal Approximation.

