MATH 180A: INTRO TO PROBABILITY (FOR DATA SCIENCE)

www.math.ucsd.edu/~tkemp/180A

HW4 due TONIGHT by 11:59pm Lab4 due next Wednesday (Nov6) by 11:59pm Example

50-01% Flip a fair coin n times. How does = 0,500 $\lim_{n \to \infty} P(\frac{\# Heads}{n}, \frac{50.01\%}{1}) =$ behave as $n \to \infty$? 0 $n = 10^{10}$ $n = 10^{5}$ $2\ln(0.0001) = 200$ Suppose after 10,000 flips, there are 5,001 Heads $\int 1-\overline{\Phi}(0.02)$ Should we doubt that the coiro is really fair? = 40%[19%] $\frac{1}{3} = \frac{1}{2} + \varepsilon$ = $P(\frac{S_n - \frac{1}{2}n}{2} \ge \varepsilon) = P(\frac{S_n - \frac{1}{2}n}{16} \ge 2\varepsilon f_n) \approx P(X \le 2\varepsilon f_n)$ $= \frac{1}{2} + \varepsilon = P(\frac{S_n - \frac{1}{2}n}{16} \ge \varepsilon) = P(\frac{S_n - \frac{1}{2}n}{16} \ge 2\varepsilon f_n) \approx P(X \le 2\varepsilon f_n)$

Suppose we have a coin that is biased by some unknown amount;

43

X~Bercp? unknown p!

How can we figure out what p is ?

Use the law of large numbers: $p = \lim_{n \to \infty} \frac{S_n}{N}$

We can't actually wait around for $n \rightarrow \infty$. Instead, we estimate $p \approx \hat{p} := \frac{Sn}{n}$ for some large n.

The question is: how good an estimate is this for given n? Or, turning it around: how big must you take n to get an estimate of a certain accuracy?

 $|\hat{p}-p| < \varepsilon (= 0.01)$ " \hat{p} is within margin $P(|\hat{p}-p| < \varepsilon) \ge 95\%$ "probability 95%"

<u>Conclusion</u>: $\mathbb{P}(|\hat{p}-p| < \varepsilon) \ge 2\overline{\Phi}(2\varepsilon \overline{n}) - 1$

How many times should we flip a coin, biased an unknown amount p, so that the estimate $\hat{p} = \frac{Sn}{n}$ is within a tolerance of 0.05 of the true value p, with probability $\ge 99\%$? Example (of the Beast) Want n large enough that P(|p-p|< 0.05) 3 99% make swa We know $P(1p-p) < 0.05) = 2\overline{\Phi}(2(0.05)\overline{m}) - 1 = 99\%$ (2) $\overline{\Phi}(2(0.05)\overline{m}) = 0.995$ i. 2(0.05) fr 7, 2.58 $\sqrt{n} = 25.8$ n = 665,64666

Confidence Intervals

Turning this ground: if we can't control n, we would like to say how accurate the sample mean is as an estimate of the true mean, for a given number n of samples.

Eg. À coin (of unknown bias p) is tossed 1000 times. 450 Heads come up within what tolerance can we say we know the true value of p with probability >95%?

Estimate
$$p \approx \hat{p} = \frac{S_{1000}}{1000} = 0.45$$

want $\mathbb{P}(1p-\hat{p}|<\varepsilon) \ge 95\%$

If an experiment is repeated in many independent trials, and the preceding (normal approximation) estimates yield $P(|\hat{p}-p| < \epsilon) > 95\%$

we say $[\hat{p}-\epsilon, \hat{p}+\epsilon]$ is the 95% <u>confidence interval</u> for p. The same statement might be given as " $p=\hat{p}$ with margin of error ϵ (95 times out ϵ 100)".

Pell conducted Oct 25-30

of 439 Iowa Democratic

 $P(1p - \hat{p} | < \epsilon) > 2\overline{\Phi}(2\epsilon | \overline{439}) - 1$ (~) ≥ 0.95

TR. 281439 7.1.96

8 7 4.68%

caucusgoers.

Source: New York Times Upshot/Siena College poll conducted Oct. 25-30.

Margin of error: 4.7%

Poisson Approximation $S_n \sim Bin(n, \lambda/n) : \lim_{n \to \infty} P(S_n = k) = e^{-\lambda} \frac{\lambda^k}{k!}$ (4.)

Quantitative Bound:

Theorem: If X~Bin(n,p) and Y~Poisson(np), for any subset ASN $|\mathbb{P}(X \in A) - \mathbb{P}(Y \in A)| \leq np^2$

Upshot: if np2 is small, use Poisson Approximation. if np(1-p) is big, use Normal Approximation.