Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Today: $\{3.5,4.1$
Next: $\quad\{4.2-4.3$
HW3 grades released; regrade requests Tue $10 / 29$ Sam-1ipm Midterm grades released; regrade requests Wed $10 / 308 \mathrm{gam}-11 \mathrm{pm}$ Lab 3 grades released; regrade requests Thu $10 / 31$ Sam-lipm HW4 now posted; due next Friday (No vI) by 1159pm.

Standand Normal/Gaussian $N(0,1)$
Probability density

$$
f(x)=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

Eg. Let $x \sim \mathcal{N}(0,1)$. What is $\mathbb{P}(|x| \leq 1)$?

$$
\mathbb{P}(|x| \leqslant 1)=
$$

$$
\Phi(x):=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2} d t \text {. }
$$

Normal Table of Values
This standard table
(Appendix E in textbook) lists the values of
Eg. $\Phi(1.56)$
Fact: $\Phi(-x)=1-\Phi(x)$

Mean and Variance $X \sim \mathcal{N}(0,1)$

$$
\mathbb{E}(X)=
$$

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}(X))^{2}\right]
$$

General Normal $N\left(\mu, \sigma^{2}\right)$
Let $X \sim N(0,1)$. For $\sigma>0, \mu \in \mathbb{R}$, let $Y=\sigma X+\mu$.

$$
\begin{aligned}
& \mathbb{P}(Y \leqslant y) \\
\therefore & f_{Y}(y)=\frac{d}{d y} \mathbb{P}(Y \leqslant y)
\end{aligned}
$$

Fact: If $a, b \in \mathbb{R}, \mathbb{E}(a X+b)=a \mathbb{E}(X)+b$ \& $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$

$$
\begin{aligned}
& \mathbb{E}(\sigma X+\mu)=\sigma \mathbb{E}(X)+\mu=0+\mu=\mu . \quad \operatorname{Var}(\sigma X+\mu)=\sigma^{2} \operatorname{Var}(X)=\sigma^{2} \\
\therefore & \mathbb{P}(|Y-\mu| \geq k \sigma) \leqslant \frac{1}{k^{2}} \quad \text { (Chebyshev) }
\end{aligned}
$$

Why should I care about normal distributions?
We've already seen one scaling limit: if $S_{n} \sim \operatorname{Bin}(n, p)$

$$
\begin{aligned}
& p=\lambda / n \\
& \lim _{n \rightarrow \infty} \mathbb{P}\left(S_{n}=k\right)=
\end{aligned}
$$

This is for rare events.
But what it we are sampling trials where success is not so rare?
Eg. Toss a fair coin 500 times. What is the probability that the number of heads is between 240 and 260?

Here is a plot of the
probability mass function of the Bin $\left(500, \frac{1}{2}\right)$ distribution. It has a very distinct bell curve shape.
This is no accident: as $n \rightarrow \infty$, for fixed p,
$\operatorname{Bin}(n, p)$ approximates a normal distribution!

Which one? Determined by mean and var rance.

$$
\begin{aligned}
& S_{n} \sim \operatorname{Bin}(n, p) \\
& \rightarrow \mathbb{E}\left(S_{n}\right)= \\
& \rightarrow \operatorname{Var}\left(S_{n}\right)=
\end{aligned}
$$

Vague Theorem
For n large and p net close to 0 or 1,

$$
\operatorname{Bin}(n, p) \approx
$$

Binomial Central Limit Theorem
Fix $p \in(0,1)$. For each n, let $S_{n} \sim \operatorname{Bin}(n, p)$. For any fixed $a \leqslant b$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(a \leqslant \frac{S_{n}-n p}{\sqrt{n p(1-p)}} \leqslant b\right)=\int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x
$$

Eg. Toss a fair coin 500 times. What is the probability that the number of heads is between 240 and 260?

Eg. A fair die is rolled 720 times. What is the probability that exactly 113 sixes come up?

$$
S=\# \text { sixes } \sim \operatorname{Bin}\left(720, \frac{1}{6}\right) . \quad \mathbb{P}(S=113)
$$

Normal Approximation:

$$
\begin{aligned}
& \mathbb{E}(S)=720 \cdot \frac{1}{6}=120 \quad \operatorname{Var}(S)=720 \cdot \frac{1}{6} \cdot \frac{5}{6}=100 \\
& \mathbb{P}(S=113)
\end{aligned}
$$

Fun Example: Roll a fair die. If it comes up 1 or 2, take 2 steps.
If it comes up 3 or more, take 3 steps.
Repeat. After 450 rolls, how likely is it you've taken more than 1185 steps?

