MATH 180A: INTRO TO PROBABILITY (FOR DATA SCIENCE)

www.math.ucsd.edu/~tkemp/180Å

Today: §3.5,4,1 Next: §4.2-4.3

HW3 grades released; regrade requests The 10/29 Sam-11pm Midtern grades released; regrade requests Wed 10/30 Sam-11pm Lab3 grades released; regrade requests Thu 10/31 Sam-11pm HW4 now posted; due next Friday (Nov1) by 11:59pm.

Standard Normal/Gaussian N(0,1)

Probability density

 $f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}$

Eq. Let $X \sim \mathcal{N}(0,1)$. What is $\mathbb{P}(|X| \leq 1)$?

$\mathbb{P}(|X| \leq |) =$

Normal Table of Values

This standard table		0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
THUS DIGNIEUN OL TOWLL	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
(Appendix t in textbook)	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
This standard table (Appendix E in textbook) lists the values of	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
	0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
Eg. $\overline{\Phi}(1.56)$ Fact: $\overline{\Phi}(-x) = 1 - \overline{\Phi}(x)$	0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
	0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
	1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
	1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
	1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
	1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
	1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
	2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
	2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
	2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
	2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
	2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
	2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
	2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
	2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
	3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
	3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
	3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
	3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
		1									

 $Var(X) = \mathbb{E}[(X - \mathbb{E}(X))^2]$

General Normal $\mathcal{N}(\mu, \varepsilon^2)$ Let $X \sim \mathcal{N}(0,1)$. For $\varepsilon > 0$, $\mu \in \mathbb{R}$, let $Y = \varepsilon X + \mu$. $\mathbb{P}(Y \leq y) = \mathbb{P}(\varepsilon X + \mu \leq y)$ $\therefore f_Y(y) = \frac{1}{2y} \mathbb{P}(Y \leq y)$

 $Fact: If abelic, E(aX+b) = aE(X)+b & Var(aX+b) = a^{2}Var(X)$ $E(\sigma X+\mu) = \sigma E(X)+\mu = 0+\mu = \mu. \quad Var(\sigma X+\mu) = \sigma^{2}Var(X) = \sigma^{2}$ $\cdot P(|Y-\mu| \ge k\sigma) \le \frac{1}{k^{2}} \quad (Chebyshev)$

Why should I care about normal distributions?

We've already seen one scaling limit: if Sn~Bin(n,p)

 $\implies \lim_{n \to \infty} \mathbb{P}(S_n = k) =$

p= >/n

This is for name events.

But what it we are sampling trials where success is not so rare? E.g. Toss a fair coin 500 times. What is the probability that the number of heads is between 240 and 260 ?

Binomial Central Limit Theorem

Fix pero, D. For each n, let Sn~Bin(n,p). For any fixed asb, $\lim_{n \to \infty} \mathbb{P}\left(a \leq \frac{S_n - np}{\sqrt{np(1-p)}} \leq b\right) = \int \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$

E.g. Toss a fair coin 500 times. What is the probability that the number of heads is between 240 and 260 ? Eg. A fair die is rolled 720 times. What is the probability that exactly 113 sixes come up?

S = # sixes ~ Bins (720, 2). P(S=113)

Normal Approximation:

 $\mathbb{E}(S) = 720.\frac{1}{6} = 120$ $Var(S) = 720.\frac{1}{6}.\frac{2}{6} = 100$

P(S=113)

Fun Example: Roll a fair die. If it comes up 1 or 2, take 2 steps. If it comes up 3 or more, take 3 steps.

Repeat. After 450 rolls, how likely is it you've taken more than 1185 steps?