Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180A
Midterm Exam TONIGHT V
Bpm PCYNH 109

* Assigned seats (see Triton Ed)
* Bring student ID
* 1 Double-Sided $85^{5} \times 11$ " sheet of hand-written notes
* no electronic devices
* eat a proper dinner before (but not right before)
* try to relax; have fun!

Regrade requests for Lab 2: Thursday, 10/248 am - 11 pm

1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space.
(a) Suppose that $A, B \in \mathcal{F}$ satisfy
$r \in(0,1)$

$$
\mathbb{P}(A)+\mathbb{P}(B)>1
$$

Making no further assumptions on A and B, prove that $A \cap B \neq \emptyset$.

$$
\begin{aligned}
& \mathbb{P}(A \cup B) \\
&=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B) \\
&>1-\mathbb{P}(A \cap B) \\
& r>1-\mathbb{P}(A \cap B) \\
& \mathbb{P}(A \cap B)>1-r \geqslant 0 \\
& \mathbb{P}(A \cap B)>0, \quad r \leqslant 1 \\
& \quad-r \geqslant 0 \\
& \therefore \quad A \subset B \neq \varnothing
\end{aligned}
$$

(b) Prove that A is independent from itself if and only $f \mathbb{P}(A) \in\{0,1\}$.
$(\Rightarrow$ Suppose A is index. from A.
Ie. $\quad \mathbb{P}(A \subset A)=\mathbb{P}(A) \mid P(A)$

$$
P(A)=P
$$

$$
\ddot{\mathbb{P}(A)} \quad \mathbb{P}(A)^{2}
$$

Ie. $\quad p=p^{2} \quad \therefore p-p^{2}=0 \therefore p(1-p)=0$

$$
\therefore p=0 \text { or } 1-p=0
$$ iss $p=1$,

$(\Leftrightarrow$ Suppose $P(A)=0$ or 1 .
Ten $\mathbb{P}(A)=\mathbb{P}(A)^{2} \quad\left(0^{2}=0,1^{2}=1\right)$
$\mathbb{P}^{\prime \prime}(A-A)$ ic. A is moles. from A.
2. Roll two fair dice repeatedly. If the sum is ≥ 10, then you win.
(a) What is the probability that you start by winning 3 times in a row?

$$
\begin{aligned}
\text { Single round, } \mathbb{P}(\text { success }) & =\mathbb{P}\{(4,6),(5,5),(6,4),(5,6),(6,5),(6,6))) \\
& =\frac{6}{36}=\frac{1}{6} \\
\therefore \mathbb{P}((\text { win, win, win })) & =\mathbb{P}(\text { win }) \mathbb{P}(\text { win }) \mathbb{P}(\text { wm })=\left(\frac{1}{6}\right)^{3}
\end{aligned}
$$

$\operatorname{Bin}\left(3 \frac{1}{6}\right)$
(b) What is the probability that after rolling the pair of dice 5 times you win exactly 3 times?
$X=$ \# of was ins trials $\therefore X \sim \operatorname{Bin}\left(5, \frac{1}{6}\right)$

$$
\therefore \mathbb{P}(X=3)=\binom{5}{3}\left(\frac{1}{6}\right)^{3}\left(\frac{5}{6}\right)^{2}
$$

"has prob. distrbutan ="
(c) What is the probability that the first time you win is before the tenth roll (of the pair), but after the fifth?
$N=$ time of pst success, $N \sim \operatorname{Gecm}\left(\frac{1}{6}\right)$

$$
\begin{aligned}
\mathbb{P}(S<N<10) & =\mathbb{P}(6 \leqslant N \leq 9) \\
& =\mathbb{P}(N=6)+\mathbb{P} / N=7)+\mathbb{P}(N=8)+\mathbb{P}(N=9) \\
& =\left(\frac{5}{6}\right)^{5} \frac{1}{6}+\left(\frac{5}{6}\right)^{6} \frac{1}{6}+\left(\frac{5}{6}\right)^{7} \frac{1}{6}+\left(\frac{5}{6}\right)^{8} \frac{1}{6} . \\
& =\left(\frac{5}{6}\right)^{5}-\left(\frac{5}{6}\right)^{9}
\end{aligned}
$$

1. At a political meeting there are 7 progressives and 7 conservatives. We choose five people uniformly at random to form a committee (president, vice-president and 3 regular members).
a) Let A be the event that we end up with more conservatives than progressives. What is the probability of A ?
(b) Let B be the event that Ronald, representing conservatives, becomes the president, and Felix, representing liberals, becomes the vice-president. What is the probability of B ?
(a) $A_{j}=\{j$ conservatives are chosen $\}$

$$
A=A_{3} \cup A_{4} \cup A_{5} \quad \mathbb{P}(A)=\mathbb{P}\left(A_{3}\right)+\mathbb{P}\left(A_{4}\right)+\mathbb{P}\left(A_{5}\right)
$$

$\uparrow \uparrow \lambda$

$$
\begin{aligned}
& \text { disjoint } \\
& \mathbb{P}\left(A_{j}\right)=\frac{\text { disjoint }}{\binom{7}{j}\binom{7}{s-j}}\binom{14}{s} \quad \lambda \\
& \therefore \mathbb{P}(A)=\frac{\binom{7}{3}\binom{7}{2}+\binom{7}{4}\binom{7}{1}+\binom{7}{5}\binom{7}{0}}{\binom{14}{5}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \frac{\binom{12}{3}^{\swarrow}}{\binom{14}{5}}=\frac{10}{13 \cdot 7}=\mathbb{P}(\text { Ronald bo felly } \\
& \mathbb{R} \neq \mathbb{P}(B) \text { are on the committee) } \\
& B=\{(\text { Ronald, Fell } x, * *, x)\} \\
& \mathbb{P}(B)=\frac{1 \cdot 1 \cdot 12 \cdot 11 \cdot 10}{14 \cdot 13 \cdot 12 \cdot 11 \cdot 10}=\frac{1}{14 \cdot 13}
\end{aligned}
$$

4. Consider a point $P=(X, Y)$ chosen uniformly at random inside of the unit square $[0,1]^{2}=[0,1] \times[0,1]=\{(x, y): 0 \leq x, y \leq 1\}$. Let $Z=\min (X, Y)$ be the random variable defined as the minimum of the two coordinates of the point. For example, if $P=\left(\frac{1}{2}, \frac{1}{3}\right)$, then $Z=\min \left(\frac{1}{2}, \frac{1}{3}\right)=\frac{1}{3}$. Determine the cumulative distribution function of Z. Determine if Z is a continuous random variable, a discrete random variable, or neither. If continuous, determine the probability density function of Z. If discrete, determine the probability mass

$$
\begin{aligned}
& F_{z}(t)= \begin{cases}0 & t<0 \\
1-(1-t)^{2} & 0 \leqslant t \leqslant 1 \\
1 & t>1\end{cases} \\
& \left(\begin{array}{l}
0 \leqslant t \leqslant 1) \\
y \mathbb{P}(\min (x, y) \leqslant t)=1-\mathbb{P}(\min
\end{array}\right. \\
& =1-\mathbb{P}(x>t, y>t) \\
& =1-\mathbb{P}((x, y) \in S) \\
& S=\{(a, b): a>t, b>t\}
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{P}\left(\left\{\left(X_{,},\right)+S\right\}\right) & =\frac{\operatorname{Arca}(S)}{\operatorname{Arch}(T)=1}=(1-t)^{2} \\
f_{z}(t) & =\left\{\begin{array}{cc}
0 & t<0 \\
2(1-t) & 0 \leqslant t \leqslant 1 \\
0 & t>1
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& f_{x}(t) \cdot 2 \varepsilon \quad \approx \mathbb{P}(t-\varepsilon \leqslant x \leq t+\varepsilon) \\
& f_{x}(t)=\lim _{\varepsilon \rightarrow 0} \frac{\mathbb{P}(t-\varepsilon \leq x \leq t+\varepsilon)}{2 \varepsilon}
\end{aligned}
$$

