Math $180 A:$ Intro to Probability (for Data Science)
www. math. ucsd.edu/~tkemp/180 A
Today: $₹ 3.3$
Next: $\{3.4$
HW3 due Tonight
Lab 3.2 due Monday.

* Regrade requests for HW2: whidew Tuesday, 10/22
$\rightarrow$ separ ate request for each problem 8 am-11pm
$L$ detailed, polite responses please.
* Midterm 1: Wednesday, 10/23, 8-10 pm, PCYNH 109 Assigned seats (see Triton Ed ) 1 double sided sheet of (hand-written) notes allowed Practice Midterms posted on webpage

Poisson D, stribution
A random variable $X$ has the Poisson $(\lambda)$ distribution if

$$
\mathbb{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}, \quad k=0,1,2, \ldots
$$

Eg. A 100 year storm is a storm magnitude expected to occur in any given year with probability 1/100.
Over the course of a century, how likely is it to see at least 4100 year storms?

Summary
Sampling independent trials, the most important (discrete) probability distributions are:

- $\operatorname{Ber}(p): \mathbb{P}(X=1)=p, \mathbb{P}(X=0)=1-p \quad 0 \leqslant p \leqslant 1$ (single trial with success probability $p$ )
- $\operatorname{Bin}(n, p): \mathbb{P}\left(S_{n}=k\right)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad 0 \leqslant k \leqslant n$ ( number of successes in $n$ independent trials with rate $p$ )
- $\operatorname{Greom}(p) \quad \mathbb{P}(N=k)=(1-p)^{k-1} p \quad k=0,1,2, \ldots$
(first successful trial in repeated independent trials with rate $p$ )
- Poisson ( $\lambda$ ) $\mathbb{P}(X=k)=e^{-\lambda} \frac{\lambda^{k}}{k!} \quad k=0,1,2, \ldots \quad \lambda>0$. (Approximates $\operatorname{Bino}(n, \lambda / n)$; number of rare events in many trials)

Expectation
Toss a fair coin 1000 times, and record the sequence of outcomes.

Average them. What size do you expect this number to have?

What if the coin is biased $\mathbb{P}\left(x_{j}=1\right)=p, \mathbb{P}\left(x_{j}=0\right)=1-p$. Definition: Let $X$ be a discrete random variable with possible values $t_{1}, t_{2}, t_{3}, \ldots$ The expectation or expected value of $X$ is

$$
\mathbb{E}(X):=
$$

Question: Is the expectation $\mathbb{E}(X)$ the value $X$ is equal to most often?
(a) Yes, always
(b) No, not generally.

Eg. Let $X$ be the number rolled on a fair die.

Eg. Let $Y$ be $\operatorname{Ber}(p)$.
Eg. You toss a biased coin $(Y)$ repeatedly until the first heads. Hew long do yen expect it to take?

$$
\begin{aligned}
E_{. g .} S_{n} & \sim \operatorname{Bin}(n, p) \quad\left(S_{n}=X_{1}+X_{2}+\cdots+X_{n} \text { for } X_{j} \text { independent } \operatorname{Ber}(p)\right) \\
\mathbb{E}\left(S_{n}\right) & =\sum_{k=0}^{n} k \cdot \mathbb{P}\left(S_{n}=k\right)=\sum_{k=0}^{n} k \cdot\binom{n}{k} p^{k}(1-p)^{n-k}
\end{aligned}
$$

Eg. $X \sim \operatorname{Poisson}(\lambda)$

$$
\mathbb{E}(X)=
$$

$\longrightarrow$ Eg. A factory has, on average, 3 accidents per month. Estimate the probability that there will be exactly 2 accidents this month.

Egg. Tass a fair coin until tails comes up. If this is on the first loss, you win $\$ 2$ and stop. If heads comes up, the pet doubles, and you continue. That is, if the first tails is an the $k^{\text {th }}$ toss, you win dollars.
What is your expected winnings?

Expectation of Continuous Random Variable (with density)
$X$ discrete, $X \in\left\{t_{1}, t_{2}, t, \ldots\right\}$

$$
\mathbb{E}(x)=\sum_{j} t_{j} \mathbb{P}\left(X=t_{j}\right)
$$

$X$ continuous $(\mathbb{P}(X=t)=0$ for each $b \in \mathbb{R}$ )
provability density $f_{x}(t)$

Eg. Let $X \sim$ Unif $([a, b]), f_{X}(t)=\left\{\begin{array}{cc}\frac{1}{b-a} & 0 \leqslant t \leqslant b \\ 0 & \text { otherwise }\end{array}\right.$

Question:
Shoot an arrow at a circular target of radius 1. What is the expected distance of the arrow from the center?
(a) 1
(b) $2 / 3$
(c) $1 / 2$
(d) $1 / 4$

Egg. $f(t)=\left\{\begin{array}{ll}0 & t \leqslant 1 \\ 1 / t^{2} & t>1\end{array}\right.$ is a probability density.

If $X$ is a continuous randem variable with $f_{X}=f$, what is $\mathbb{E}(x)$ ?

