Math 180A: Final Practice Problems (Chapters 6, 8, and 9)

1. Let X and Y be continuous random variables with joint density function

$$
f_{X, Y}(x, y)= \begin{cases}\frac{x}{2}+\frac{y}{4}, & 0 \leq x \leq 1,0 \leq y \leq 2 \\ 0, & \text { otherwise }\end{cases}
$$

(a) (5 points) Compute $\mathbb{P}(X>2 Y)$.
(b) (5 points) What is the marginal density f_{X} of X ?
(c) (5 points) Are X and Y independent? Explain.

Solutions. (a) Be definition of joint density

$$
\begin{aligned}
\mathbb{P}(X>2 Y)=\iint_{\{(x, y): x>2 y\}} f_{X, Y}(x, y) d x d y & =\int_{0}^{1}\left(\int_{0}^{x / 2}\left(\frac{x}{2}+\frac{y}{4}\right) d y\right) d x \\
& =\int_{0}^{1}\left(\frac{x}{2} y+\left.\frac{y^{2}}{8}\right|_{y=0} ^{y=x / 2} d x\right. \\
& =\int_{0}^{1}\left(\frac{x^{2}}{4}+\frac{x^{2}}{32}\right) d x=\frac{9}{32} \cdot \frac{1}{3}=\frac{3}{32} .
\end{aligned}
$$

(b) When $x \notin[0,1], f_{X, Y}(x, y)=0$ so $f_{X}(x)=0$. When $x \in[0,1]$,

$$
f_{X}(x)=\int_{0}^{2} f_{X, Y}(x, y) d y=\int_{0}^{2}\left(\frac{x}{2}+\frac{y}{4}\right) d y=\left(\frac{x}{2} y+\left.\frac{y^{2}}{8}\right|_{y=0} ^{y=2}=x+\frac{1}{2}\right.
$$

(c) No, they are not independent. The domain is a rectangle, but the function $f_{X, Y}(x, y)$ is not a product of the form $u(x) v(y)$. Indeed, suppose it were. Then we would have to have $\frac{x}{2}=f_{X, Y}(x, 0)=u(x) v(0)$, and also $\frac{x}{2}+1=f_{X, Y}(x, 4)=u(x) v(4)$. Dividing these would show that

$$
\frac{x / 2}{x / 2+1}=\frac{u(x) v(0)}{u(x) v(4)}=\frac{v(0)}{v(4)}=\text { constant. }
$$

But that's not true: the function $\frac{x / 2}{x / 2+1}$ is not constant (it takes value 0 at $x=0$ and value $\frac{1}{2}$ at $x=2$). So $f_{X, Y}$ is not a product, and therefore X and Y are not independent.
2. An urn contains 5 balls: two balls labeled 1, two balls labeled 2, and one ball labeled 3. You sample 2 balls from the bin, without replacement; the number on the first one is X, and the number on the second one is Y.
(a) (5 points) Compute the joint probability mass function of X and Y. (You may find it convenient to express it in the form of a chart.)
(b) (5 points) Compute the probability mass function of X and the probability mass function of Y.
(c) (5 points) Are X and Y independent? Justify your answer.

Solutions. (a) The possible values of X and Y are both $\{1,2,3\}$, so we need to compute the 9 numbers $\mathbb{P}(X=j, Y=k)$ for $1 \leq j, k \leq 3$. Since Y is chosen after X, and the sampling is done without replacement, it is best to treat this as a two-stage experiment and use conditional probability:

$$
\begin{equation*}
\mathbb{P}(X=j, Y=k)=\mathbb{P}(Y=k \mid X=j) \mathbb{P}(X=j) \tag{*}
\end{equation*}
$$

For the choice of the first ball, we have $\mathbb{P}(X=1)=\mathbb{P}(X=2)=\frac{2}{5}$ while $\mathbb{P}(X=3)=\frac{1}{5}$. For the second ball, we break into the 3 cases:

- $\{X=1\}$: there are 4 balls left, one labeled 1 , two labeled 2 , and 1 labeled 3 . So the conditional probabilities are $\mathbb{P}(Y=1 \mid X=1)=\mathbb{P}(Y=3 \mid X=1)=\frac{1}{4}, \mathbb{P}(Y=2 \mid X=1)=$ $\frac{2}{4}=\frac{1}{2}$.
- $\{X=2\}$: there are 4 balls left, two labeled 1, one labeled 2, and 1 labeled 3. So the conditional probabilities are $\mathbb{P}(Y=1 \mid X=2)=\frac{2}{4}=\frac{1}{2}, \mathbb{P}(Y=2 \mid X=2)=$ $\mathbb{P}(Y=3 \mid X=2)=\frac{1}{4}$.
- $\{X=3\}$: there are 4 balls left, two labeled 1 and two labeled 2 . So the conditional probabilities are $\mathbb{P}(Y=1 \mid X=3)=\mathbb{P}(Y=2 \mid X=3)=\frac{2}{4}=\frac{1}{2}, \mathbb{P}(Y=3 \mid X=3)=0$.
Now using Equation (??), we can compute the joint probability mass function, which we write as the following chart:

	$Y=1$	$Y=2$	$Y=3$
$X=1$	$1 / 10$	$1 / 5$	$1 / 10$
$X=2$	$1 / 5$	$1 / 10$	$1 / 10$
$X=3$	$1 / 10$	$1 / 10$	0

(b) For each $j, \mathbb{P}(X=j)=\sum_{k=1}^{3} \mathbb{P}(X=j, Y=k)$, meaning we get the probability mass function of X by summing the rows of the above chart. Similarly, we get the probability mass function of Y by summing the columns. The result is

j	$\mathbb{P}(X=j)$
1	$2 / 5$
2	$2 / 5$
3	$1 / 5$

k	$\mathbb{P}(X=k)$
1	$2 / 5$
2	$2 / 5$
3	$1 / 5$

(We see that X and Y are identically distributed.)
(c) No, they are not independent. For example, note that $\mathbb{P}(X=3, Y=3)=0$, while $\mathbb{P}(X=3) \mathbb{P}(Y=3)=\frac{1}{5} \cdot \frac{1}{5}=\frac{1}{25}$.
3. Let $U_{1}, U_{2}, \ldots, U_{n}, \ldots$ be independent, identically distributed random variables, each with the Uniform $[-2,2]$ distribution. Let $S_{n}=U_{1}+U_{2}+\cdots+U_{n}$.
(a) (5 points) Compute $\mathbb{E}\left(S_{n}\right)$ and $\operatorname{Var}\left(S_{n}\right)$.
(b) (5 points) For any $\epsilon>0$, what can you say about

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\left|S_{n}\right|}{n^{2 / 3}} \geq \epsilon\right) ?
$$

Solutions. (a) Each U_{j} has density $\frac{1}{4} \mathbb{1}_{[-2,2]}$, so

$$
\mathbb{E}\left(U_{j}\right)=\int_{-2}^{2} x \cdot \frac{1}{4} d x=\left.\frac{1}{8} x^{2}\right|_{-2} ^{2}=0, \quad \mathbb{E}\left(U_{j}^{2}\right)=\int_{-2}^{2} x^{2} \cdot \frac{1}{4} d x=\left.\frac{1}{12} x^{3}\right|_{-2} ^{2}=\frac{4}{3}
$$

Therefore $\operatorname{Var}\left(U_{j}\right)=\mathbb{E}\left(U_{j}^{2}\right)-\left[\mathbb{E}\left(U_{j}\right)\right]^{2}=\frac{4}{3}$. The sum S_{n} therefore has

$$
\mathbb{E}\left(S_{n}\right)=\sum_{j=1}^{n} \mathbb{E}\left(U_{j}\right)=0
$$

and since the U_{j} are all independent, we have

$$
\operatorname{Var}\left(S_{n}\right)=\sum_{j=1}^{n} \operatorname{Var}\left(U_{j}\right)=\frac{4}{3} n
$$

(b) We use Chebyshev's inequality. From part (a), $\mathbb{E}\left(S_{n} / n^{2 / 3}\right)=\frac{1}{n^{2 / 3}} \mathbb{E}\left(S_{n}\right)=0$, while

$$
\operatorname{Var}\left(S_{n} / n^{2 / 3}\right)=\frac{1}{n^{4 / 3}} \operatorname{Var}\left(S_{n}\right)=\frac{1}{n^{4 / 3}} \cdot \frac{4}{3} n=\frac{4}{3 n^{1 / 3}}
$$

Thus

$$
\mathbb{P}\left(\frac{\left|S_{n}\right|}{n^{2 / 3}} \geq \epsilon\right)=\mathbb{P}\left(\left|\frac{S_{n}}{n^{2 / 3}}-\mathbb{E}\left(\frac{S_{n}}{n^{2 / 3}}\right)\right| \geq \epsilon\right) \leq \frac{\operatorname{Var}\left(S_{n} / n^{2 / 3}\right)}{\epsilon^{2}}=\frac{4}{3 \epsilon^{2} n^{1 / 3}} \rightarrow 0 \text { as } n \rightarrow \infty
$$

Thus

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\left|S_{n}\right|}{n^{2 / 3}} \geq \epsilon\right)=0
$$

4. Let T be the triangle in \mathbb{R}^{2} with vertices $(0,0),(0,1)$, and $(1,1)$ (including the interior). Suppose that $P=(X, Y)$ is a point chosen uniformly at random inside of T.
(a) (5 points) What is the joint density function of (X, Y) ? Use this to compute $\operatorname{Cov}(X, Y)$.
(b) (5 points) Determine if X and Y are independent.

Solutions. (a) The joint density of (X, Y) is

$$
f_{(X, Y)}= \begin{cases}\frac{1}{\operatorname{Area}(T)}=2 & \text { if }(x, y) \in T ; \\ 0 & \text { if }(x, y) \notin T\end{cases}
$$

We compute the covariance using the formula $\operatorname{Cov}(X, Y)=\mathbb{E}[X Y]-\mathbb{E}[X] \mathbb{E}[Y]$:

$$
\mathbb{E}[X Y]=\int_{0}^{1} \int_{x}^{1} 2 x y d y d x=\left.\int_{0}^{1}\left(x y^{2}\right)\right|_{x} ^{1} d y=\int_{0}^{1} x-x^{3} d y=\left.\left(\frac{x^{2}}{2}-\frac{x^{4}}{4}\right)\right|_{0} ^{1}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}
$$

Similarly,

$$
\mathbb{E}[X]=\int_{0}^{1} \int_{x}^{1} 2 x d y d x=\int_{0}^{1} 2 x-2 x^{2} d x=\left.\left(x^{2}-\frac{2 x^{3}}{3}\right)\right|_{0} ^{1}=1-\frac{2}{3}=\frac{1}{3}
$$

and

$$
\mathbb{E}[Y]=\int_{0}^{1} \int_{x}^{1} 2 y d y d x=\int_{0}^{1}\left(\left.y^{2}\right|_{x} ^{1}\right) d x=\int_{0}^{1} 1-x^{2} d x=\left.\left(x-\frac{x^{3}}{3}\right)\right|_{0} ^{1}=1-\frac{1}{3}=\frac{2}{3} .
$$

So, $\operatorname{Cov}(X, Y)=\frac{1}{4}-\frac{1}{3} \frac{2}{3}=\frac{1}{4}-\frac{2}{9}=\frac{1}{36}>0$.
(b) X and Y are not independent because $\operatorname{Cov}(X, Y) \neq 0$.
5. Suppose $X_{1}, X_{2}, \ldots, X_{n}, \ldots$ are i.i.d. random variables with mean $\mathbb{E}\left(X_{j}\right)=0$ and variance $\operatorname{Var}\left(X_{j}\right)=1$. Determine the following limits with precise justifications.
(a) (5 points) $\lim _{n \rightarrow \infty} \mathbb{P}\left(-\frac{n}{4} \leq X_{1}+\cdots+X_{n}<\frac{n}{2}\right)$
(b) (5 points) $\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{1}+\cdots+X_{n}=0\right)$

Solutions. (a) Note that

$$
\begin{aligned}
1 & \geq \mathbb{P}\left(-\frac{n}{4} \leq X_{1}+\cdots+X_{n}<\frac{n}{2}\right) \\
& =\mathbb{P}\left(-\frac{1}{4} \leq \frac{X_{1}+\cdots+X_{n}}{n}<\frac{1}{2}\right) \\
& \geq \mathbb{P}\left(-\frac{1}{4} \leq \frac{X_{1}+\cdots+X_{n}}{n} \leq \frac{1}{4}\right) .
\end{aligned}
$$

By the law of large numbers,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(-\frac{1}{4} \leq \frac{X_{1}+\cdots+X_{n}}{n} \leq \frac{1}{4}\right)=1
$$

This implies that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(-\frac{n}{4} \leq X_{1}+\cdots+X_{n}<\frac{n}{2}\right)=1
$$

(b)

$$
\begin{aligned}
\mathbb{P}\left(X_{1}+\cdots+X_{n}=0\right) & =\mathbb{P}\left(\frac{X_{1}+\cdots+X_{n}}{\sqrt{n}}=0\right) \\
& =\mathbb{P}\left(0 \leq \frac{X_{1}+\cdots+X_{n}}{\sqrt{n}} \leq 0\right) .
\end{aligned}
$$

By the central limit theorem,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(0 \leq \frac{X_{1}+\cdots+X_{n}}{\sqrt{n}} \leq 0\right)=\Phi(0)-\Phi(0)=0 .
$$

