
1. LECTURE 1: SEPTEMBER 24, 2010

1.1. Birthday Problem. If there are 2 people, the chance that they do not have the same
birthday is

364

365
.

So the chance that they do have the same birthday is

1− 364

365
=

1

365
≈ 0.28%.

If there are 3 people, you and 2 others, the chance that neither of the other two shares your
specific birthday is

364

365
· 364

365
,

and so the chance that no one else shares your birthday is

1− 364

365
· 364

365
≈ 0.55%.

However, the other two might have the same birthday, not equal to yours. The chance that
all 3 people have different birthdays is

365

365
· 364

365
· 363

365
;

hence, the probability that not all three birthdays are distinct (i.e. at least two share the same
birthday) is

1− 365

365
· 364

365
· 363

365
≈ 0.82%.

Continuing this way, we see that in a group of n ≤ 365 people, the chance that at least
two share the same birthday is

1− 365 · 364 · · · (365− n+ 1)

365n
.

For large n, this is very computationally intensive to calculate exactly. For n = 91, ad-
vanced computational tools (like Maple) can calculate it exactly; to 10 decimal places,

1− 365 · 364 · · · (275)

36591
≈ 0.9999953652.

But we can make a useful approximation. Calculus shows us that, for 0 ≤ p ≤ 1,

1− p < e−p.

Thus, if we let Pn be the probability that there are n ≤ 365 distinct birthdays,

Pn =
n−1∏
k=1

(
1− k

365

)
<

n−1∏
k=1

e−k/365 = exp

{
−

n−1∑
k=1

k
365

}
= e−

n(n−1)
2·365 .

Plugging in n = 91 on a scientific calculate yields the approximation for 1 − Pn (the
probability that at least two share a birthday)

1− Pn > 1− e−
n(n−1)
2·365 ; 1− P91 > e−

91·90
2·365 ≈ 0.9999865856.
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By comparison, consider the different question (as above) of the likelihood that someone
else has your birthday. The probability that no one else has your birthday, in a crowd of
size n, is

Qn =

(
364

365

)n−1

.

For example, with n = 91,
1−Q91 ≈ 21.8%.

In order for the probability of at least one other person to share your birthday to exceed
50%, we need n large enough that

1−Qn ≥ 0.5; =⇒ n > 253.

Many people find this surprising (and would expect the answer to be something like
365/2 ≈ 183). One partial explanation for the counter-intuitive high answer is that, among
the others, there are likely to be many pairs that share the same birthday; in 253 people,
the number of distinct birthdays represented may be many fewer than 253.

1.2. Harder Birthday Problems. It is easy to quickly find very hard problems.

• Question: In a crowd of n people, what are the chances that 3 people share the
same birthday? 4 people? m ≤ n people?

• Question: In a crowd of n people, what are the chances that 2 pairs share birth-
days? 3 pairs? m pairs? m triples? m sets of size k?

None of these have “nice” answers. (For a set of 3 in a crowd of n, there is an exact
formula, but it involves hypergeometric functions.) No formulas are known in greater
generality. One can estimate without a formula (this is typically how probability theory
is done), but this is quite hard in this setting. In fact, good estimates for the probability
that m people share the same birthday were not discovered until 1995.
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2. LECTURE 2: SEPTEMBER 27, 2010

2.1. Experiments and Outcomes. Probability theory is rooted in experimental science.
Say we conduct an experiment, and look for a particular outcome. There are many ran-
dom / uncontrollable factors that may influence the outcome; if we only conduct the
experiment once, we do not get an accurate picture. So we repeat the experiment many
times, and average the results.

If the experimental setup is the same each trial (so that the results of previous trials cannot
influence future ones), then we expect (with a large number of trials) to see different
outcomes occurring with well-defined frequencies.

Example 2.1. Our experiment is flipping a (two-faced) coin. Random effects (the velocity
we give it, friction from the air, etc.) determine the outcome, either Heads H or Tails T .
In practice, if we perform many trials, we find that

#{the outcome H occurs}
number of flips

(i.e. the frequency of Heads) becomes stable as the number of flips grows large. In other
words, if Nn(H) is the number of times H occurs in n flips, we expect that

lim
n→∞

Nn(H)

n
exists.

This limit is a real number in the interval [0, 1]. A coin is called fair if this limiting fre-
quency is exactly 1

2
. You might be surprised to learn that a U.S. quarter is not fair; experi-

ments have shown that, when tossed in the standard manner, the frequency of heads is a
tiny bit higher than tails (probably due to weight distribution).

We abstract this setup and talk about an experiment with a set Ω of possible outcomes.
This set is called the sample space. There may be more than two outcomes. In general,
we are interested in the frequencies of occurrence of sets of outcomes, called events. (That
is, events are subsets of Ω.)

Example 2.2. Consider the experiment of rolling a die. There are 6 outcomes, so the
sample space Ω = {1, 2, 3, 4, 5, 6}. The set of possible events, the subsets of {1, 2, 3, 4, 5, 6},
number 26 = 64 in total. For example, one event is E = {2, 4, 6} (which we can describe as
the event that we roll an even number on the die). Let Nn(E) denote the number of times
we observe E in n rolls. As usual, we expect that

lim
n→∞

Nn(E)

n
exists.

The die is called fair if, for k ∈ {1, 2, 3, 4, 5, 6}, limn→∞Nn(k)/n = 1
6
.

Example 2.3. A real number is chosen randomly from the interval [0, 1]. In this case, the
sample space of outcomes is [0, 1]. So events are subsets of [0, 1]. This example is trickier.
When we talk about choosing a random number, we expect (for example) the first three
decimal digits to each be chosen randomly from {1, 2, . . . , 10}with equal frequencies. But
that means that, if E291 is the event that the number chosen is 0.291 . . . (for any choice of
continuing digits), we must have

lim
n→∞

Nn(E291)

n
=

1

1000
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since the 1000 possible 3-digit numbers (ranging from 000 up to 999) are each seen with
equal frequencies as the first three digits. Similarly, any particular k-digit string will only
show up with frequency 10−k, which is very small for large k. Thus, we have the difficult
situation that, for any particular outcome x ∈ [0, 1],

lim
n→∞

Nn(x)

n
= 0.

In this example, we think in terms of intervals instead: how likely is it the number will
be between 0.1 and 0.2, for example. A random number is called uniform if, for each
interval [a, b] ⊆ [0, 1], the frequency it is in the interval [a, b] is

lim
n→∞

Nn([a, b])

n
= b− a.

Let Ω be a sample space. Here are a few properties that limiting frequencies of events in
Ω possess.

• One possible even is Ω itself, the set of all possible outcomes. Since these are the
only possible outcomes of the experiment, one of them is bound to happen every
time. So the frequency of Ω is 1.
• Another event is ∅, the event that contains no outcomes. Since some outcome

occurs each trial, the frequency of ∅ is 0.
• Suppose that E and F are two events in Ω, and they are disjoint: no outcome in
E is also in F , and vice versa. Say E = {e1, . . . , ek} and F = {f1, . . . , fm}. Hence,
counting up, we find that

Nn(E ∪ F ) = Nn({e1, . . . , ek, f1, . . . , fm})
= Nn(e1) + · · ·+Nn(ek) +Nn(f1) + · · ·+Nn(fm)

= Nn(E) +Nn(F ).

Thus, the frequencies also satisfy

lim
n→∞

Nn(E ∪ F )

n
= lim

n→∞

Nn(E)

n
+ lim

n→∞

Nn(F )

n
.

Remark 2.4. Given the first and third points above, the second follows. This is because
the events Ω and ∅ are disjoint, and so the frequency of Ω ∪ ∅ is equal to the sum of the
frequencies of Ω and ∅, or 1 + 0 = 1. On the other hand, Ω ∪∅ = Ω which has frequency
1. Hence, the frequency of ∅ must be 1− 1 = 0.

These properties lead us to the abstract Axioms of Probability Theory.

2.2. Axioms of Probability Theory. Let Ω be a set (the sample space). Let F be a collec-
tion of subsets of Ω (the events). A probability or probability measure is a function

P : F → [0, 1]

which has the following properties.
(1) P(Ω) = 1.
(2) If E,F ∈ F are disjoint (i.e. E ∩ F = ∅) then P(E ∪ F ) = P(E) + P(F ).
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(3) If E1, E2, . . . is an infinite sequence of pairwise disjoint events (i.e. Ei ∈ F for each i
and for all i 6= j Ei ∩ Ej = ∅), then

P

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

P(Ei).

You may wonder about property (3). It is important to realize that is does not follow from
property (2). By induction on property (2), it does follow that, for any finite n,

P

(
n⋃
i=1

Ei

)
=

n∑
i=1

P(Ei)

when E1, E2, . . . , En are pairwise disjoint events. If we naively take limits, we conclude
that

lim
n→∞

P

(
n⋃
i=1

Ei

)
=
∞∑
i=1

P(Ei).

This is not, a priori, the same as property (3) above; declaring these equal requires a kind
of continuity for P.

Definition 2.5. Let F1, F2, . . . be a sequence of subsets of a set Ω. If F1 ⊆ F2 ⊆ · · · , and if
F =

⋃∞
n=1 Fn, say that

Fn ↑ F as n→∞.

Proposition 2.6. Let Ω be a set and F a collection of subsets of Ω. Suppose Q : F → [0, 1] is a
function which satisfies properties (1) and (2) above (with Q in place of P). Then Q is a probability
if and only if it also satisfies the following condition.

(3’) If Fn ↑ F as n→∞, then limn→∞Q(Fn) = Q(F ).

Proof. First suppose that (3’) holds. Let E1, E2, . . . be a sequence of disjoint events. Then
set

Fn = E1 ∪ E2 ∪ · · · ∪ En
for each n. Then Fn+1 = Fn ∪ En+1, and so Fn ⊆ Fn+1. Also, setting F =

⋃∞
i=1 Ei, we have

Fn ↑ F as n→∞. Thus, by property (3’), it follows that

Q

(
∞⋃
i=1

Ei

)
= Q(F ) = lim

n→∞
Q(Fn).

From property (2),

Q(Fn) = Q(E1 ∪ · · · ∪ En) =
n∑
i=1

Q(Ei)

because the Ei are disjoint. Thus,

Q

(
∞⋃
i=1

Ei

)
= lim

n→∞

n∑
i=1

Q(Ei) =
∞∑
i=1

Q(Ei).

So property (3) holds, and Q is a probability.
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Conversely, suppose that Q is a probability. Let F1 ⊆ F2 ⊆ · · · be any increasing sequence
of events, with Fn ↑ F as n → ∞. Define E1 = F1, and for i > 1 set Ei = Fi − Fi−1 =
Fi ∩ F c

i−1. Then if i 6= j, say i < j, we have

Ei ∩ Ej = Fi ∩ F c
i−1 ∩ Fj ∩ F c

j−1 ⊆ Fi ∩ F c
j−1.

But i < j so i ≤ j − 1. Since Fi ⊆ Fi+1 ⊆ · · · ⊆ Fj−1, it follows that Fi ∩ F c
j−1 = ∅. In other

words, the events Ei are disjoint. Hence, since Q is a probability, by property (3) we have

Q

(
∞⋃
i=1

Ei

)
=
∞∑
i=1

Q(Ei).

Note that

Fn = (Fn − Fn−1) ∪ (Fn−1 − Fn−2) ∪ · · · ∪ (F2 − F1) ∪ F1 = En ∪ En−1 ∪ · · · ∪ E2 ∪ E1.

Since the Ei are pairwise disjoint, property (2) yields Q(Fn) = Q(E1) + · · · + Q(En). In
other words, we have

Q

(
∞⋃
i=1

Ei

)
= lim

n→∞
Q(Fn).

Now, what is the set
⋃∞
i=1 Ei? To say an outcome x is in this union is to say that it is in

at least one Ei. That is, x is in some Fi and not in Fi−1. Since it is in some Fi, this means
x ∈

⋃∞
i=1 Fi = F . On the other hand, if y is any element of F =

⋃∞
i=1 Fi, then there is some

unique i so that x ∈ Fi. If i > 1, then x /∈ Fi−1, and hence x ∈ Ei, so x ∈
⋃
Ei. This shows

that
⋃∞
i=1Ei = F , and so we have proven that

Q(F ) = lim
n→∞

Q(Fn),

thus verifying condition (3’).
�

Thus, a probability measure is an abstraction of the “long-time frequency of occurrence”
discussion in Section 2.1 above, with one additional condition: continuity. There is no
very good intuitive way to see why we should require this condition (because it is hard
to reason about infinite collections of events). In fact, there are some mathematicians
and statisticians who believe condition (3) should not be used. The theory that follows
without it, however, is less useful and less powerful, so we will always assume property
(3) (known as “countable additivity”). Note: in many examples we will consider, the
sample space Ω is finite, which means there are only finitely many possible events, and
condition (3) is vacuous anyhow.

Remark 2.7. The astute reader may be bothered by the proof of Proposition 2.6 (and also
by the statements of the Axioms of Probability) for the following reason. We didn’t insist
that the collection F of events consist of all subsets of the sample space Ω. (Indeed, there
are good technical reasons to allow it to be smaller – see Remark 2.8.) In order for the
machinations of the proof to work, then, F has to allow certain operations. The careful
reader should note that if we assume F is closed under countable unions –

⋃∞
i=1 Ei is in

F whenever Ei ∈ F for all i – and complements – Ec ∈ F whenever E ∈ F – along with
the required Ω ∈ F to validate property (1), then the proof of Proposition 2.6 makes good
sense. Such a class F of events is called a σ-field. To do probability theory properly, the
class of events must form a σ-field. We will gloss over this detail in Math 180A; much of
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the time, our sample space Ω will be finite, in which case we always take F to consist of
all possible subsets of Ω (and this is a σ-field).

Remark 2.8. Why would we ever want to have the class of events F not include all subsets
of the sample space Ω? One reason might be a (bad) model of the experiment where some
of the possible outcomes do not really have probabilities. For example, in the coin-tossing
experiment, you might include extra information like “heads, and I’m wearing jeans”
versus “heads, and I’m wearing a skirt”. These outcomes will not have probabilities:
over time, your outfit will change as you continue the experiment, and the inconsistency
will mean the limiting frequency does not exist. Of course, in this case, one should make
a better model that leaves out data you’re not interested in measuring anyhow.

There is a better, technical reason why F must sometimes exclude subsets of the sample
space. Consider, again, Example 2.3. Here the sample space is the interval [0, 1]. If one
takes F to equal the (absolutely, unfathomably enormous) collection of all possible sub-
sets of [0, 1], then it is a theorem (of measure theory, beyond the scope of this course) that
there does not exist a probability P defined on all of F which satisfies P([a, b]) = b − a
for all intervals [a, b] ⊆ [0, 1]. In other words, if we want to include all possible subsets as
events, there is no such thing as a uniform random number. To get around this problem,
we restrict the considered events to a subclass called the Borel sets in this example; these
are the subsets that are generated by intervals (which must, of course, be included) under
the operations of countable union and complement.

2.3. Examples of Probabilities. Suppose P is a probability on a finite sample space

Ω = {ω1, . . . , ωn}.
Let E = {ωi1 . . . , ωir} be an event. By Axiom (2), we have

P(E) = P({ωi1}) + · · ·+ P({ωir}).
In other words, P is completely determined by the probabilities it assigns to the singleton
events. So, in this finite setting, a probability is just an assignment of numbers P(ωi) = pi
to elements ωi ∈ Ω, such that pi ≥ 0 and p1 + · · ·+ pn = 1.

In this case, a common choice is pi = 1/n for each i; this is the uniform probability mea-
sure. Uniform measures describe fair or completely random events.

Example 2.9. Suppose two dice are rolled. The sample space here is the set of all pairs of
numbers, each in {1, 2, 3, 4, 5, 6}; i.e. Ω = {1, 2, 3, 4, 5, 6}2. There are 36 such elements, and
so the uniform probability measure assigns P = 1/36 to each such pair. If the dice are fair,
this is how we expect them to behave.

For example, consider the event S7 that the sum of the two dice is 7. This event is

S7 = {(i, j) : 1 ≤ i, j ≤ 6, i+ j = 7}.
The event can be enumerated, S7 = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}, having 6 el-
ements. Thus, under the uniform probability, P(S7) = 6/36 = 1/6. Similarly P(S6) =
P(S8) = 5/36, and P(S2) = P(S12) = 1/36.
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3. LECTURE 3: SEPTEMBER 29, 2010

Recall: when Ω = {ω1, . . . , ωn} is finite, a probability is just a choice of numbers P({ωi}) =
pi where pi ≥ 0 and p1 + · · · + pn = 1. The same goes for an infinite but discrete sample
space, like Ω = N; in this case a probability is just a sequence of non-negative numbers
(pn)n∈N with

∑∞
n=1 pn = 1. For the first 12 lectures in this course, we deal exclusively with

this discrete setting. This means we don’t need to worry about technical problems with
nasty subsets of the sample space, so we always assume that all subsets of Ω are events.
Also, if any outcome ω ∈ Ω has P({ω}) = 0, we can simply throw it away in this setting,
so we are free to assume that the only event with probability 0 is ∅.

3.1. Elementary Properties of Probability. The following properties hold for probabili-
ties in general, not just the discrete ones we’re considering for the time-being.

Proposition 3.1 (Monotonicity). Let P be a probability. If E and F are events and E ⊆ F , then
P(E) ≤ P(F ).

Proof. Since E∪Ec = Ω, we have F = (F ∩E)∪(F ∩Ec), and these two pieces are disjoint.
Now, since E ⊆ F , the first term is F ∩ E = E. Thus F = E ∪ (F ∩ Ec) where the two are
disjoint. Hence

P(F ) = P(E) + P(F ∩ Ec) ≥ P(E) + 0 = P(E).

�

Proposition 3.2. Let P be a probability. For any event E,

P(Ec) = 1− P(E).

Proof. Since E and Ec are disjoint, condition (2) in the Axioms of Probability says that
P(E ∪ Ec) = P(E) + P(Ec). But any outcome ω in the sample space Ω is either in E or
its complement Ec; hence E ∪ Ec = Ω. Condition (1) of the Axioms of Probability says
P(Ω) = 1, so 1 = P(Ω) = P(E ∪Ec) = P(E) +P(Ec); subtracting now yields the result. �

Proposition 3.3. Let P be a probability, and let E,F be two events. Then

P(E ∪ F ) = P(E) + P(F )− P(E ∩ F ).

Proof. One can see this by drawing a picture, and noticing that P(E) +P(F ) “overcounts”
the probability of P(E ∪ F ) by counting the region E ∩ F twice. To be rigorous, note that
E = (E∩F )∪(E∩F c) whereE∩F andE∩F c are disjoint; similarly, F = (E∩F )∪(Ec∩F )
where the two are disjoint. So

P(E) = P(E ∩ F ) + P(E ∩ F c)

P(F ) = P(E ∩ F ) + P(Ec ∩ F ).

Adding these two yields

P(E) + P(F ) = 2P(E ∩ F ) + P(E ∩ F c) + P(Ec ∩ F ).

Subtracting P(E ∩ F ) from both sides,

P(E) + P(F )− P(E ∩ F ) = P(E ∩ F ) + P(E ∩ F c) + P(Ec ∩ F ).

Now, as above, the first two terms on the right sum to P(E ∩F ) +P(E ∩F c) = P(E). Note
that E and Ec ∩ F are disjoint, and so P(E) + P(Ec ∩ F ) = P(E ∪ (Ec ∩ F )). The reader
can quickly check that E ∪ (Ec ∩ F ) = E ∪ F , and this concludes the proof. �
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Example 3.4. Out of 100 students surveyed, 90 own laptops and 65 own smart phones. Only 3
students own neither. How many own both a laptop and a smart phone?

Take the sample space to be the collection of students, and let the probability be uniform:
P(ω) = 1

100
for each student ω. So for any event E, the probability of E is just the fraction

P(E) = #E/100. Let L be the event “owns a laptop” and S the event “owns a smart
phone”. Thus P(L) = 0.9 and P(S) = 0.65. Since 3 students own neither, P(Lc∩Sc) = 0.03.
Then

P(L ∪ S) = 1− P((L ∪ S)c) = 1− P(Lc ∩ Sc) = 1− 0.03 = 0.97.

Hence,
P(L ∩ S) = P(L) + P(S)− P(L ∪ S) = 0.9 + 0.65− 0.97 = 0.58.

In other words, the number of students who own both a laptop and a smart phone is 58.

3.2. Independence. “Independence” in science is a metaphysical concept. Two events
are independent if they can have no influence on one-another under any circumstances.
Formalizing this in abstract probability theory requires the (counterpoint) notion of con-
ditional probability.

Example 3.5. Roll two fair dice (“fair” meaning all 36 outcomes are equally likely). Then
the probability of the sum being 8 is 5/36, as computed earlier.

But suppose you have some extra information. The dice are rolled one at a time; you
don’t look the first time, but your friend tells you the first die is not a 5 or a 6. Given this
information, how likely is it that the sum is 8?

This is a new experiment, so the old numbers don’t apply. Now the set of possible out-
comes is

(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6)

(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2,6)

(3, 1), (3, 2), (3, 3), (3, 4), (3,5), (3, 6)

(4, 1), (4, 2), (4, 3), (4,4), (4, 5), (4, 6)

24 outcomes instead of 36. Of these outcomes, the ones whose sum is 8 are in bold above;
there are 3. Now, each of these outcomes was equally likely before, and so (barring those
that we know do not occur now) each is equally likely. Thus, the new probability of the
sum being 8, conditioned on the knowledge that the first die is in {1, 2, 3, 4}, is 3/24 =
1/8 < 5/36.

In Example 3.5, we didn’t really need to count up; we could have used the following
scheme instead. Let N be the event that the first die is not 5 or 6. Let S be the event that
the sum is 8. We are interested in the eventN ∩S; but the sample space has been reduced
to N , so we need to renormalize. The ratio of all N -allowed outcomes in the universe in
which N occurs is

P(N ∩ S)

P(N)
.

(Note: if N is an event with probability 0, this is problematic; in finite sample spaces this
never comes up, but when we get to continuous probability, we’ll have to fiddle with
this.) This is what we call conditional probability.
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Definition 3.6. Let B be an event in a probability space, with P(B) > 0. For any event A, the
conditional probability of A given B is

P(A|B) ≡ P(A ∩B)

P(B)
.

We will spend a lot of time on conditional probability in Lectures 11 and beyond. For
now, we use this notion just to formalize independence.

Definition 3.7. Two events A,B are called independent if the probability of A is not changed
by conditioning on B (and vice versa). In other words, they are independent if P(A|B) = P(A)
and P(B|A) = P(B). Multiplying out, both of these say the same thing:

P(A ∩B) = P(A)P(B).

Example 3.8. A fair coin is tossed 3 times. The events H1 that the first is a head and T3

that the third is a tail are independent. This is because, by definition of fairness, each of
the 8 outcomes

HHH,HHT,HTH,HTT, THH, THT, TTH, TTT

is equally likely. The event H1 is equal to {HHH,HHT,HTH,HTT} with probability 1
2
;

the event T3 is equal to {HHT,HTT, THT, TTT} with probability 1
2
; the event H1 ∩ T3 is

equal to {HHT,HTT}with probability 1
4

= 1
2
· 1

2
.

Example 3.9. Choosing two balls from an urn. Suppose an urn is filled with 2 red balls and
2 blue balls. You take two out and record their colors. Consider the events E that the first
ball is blue, and F that the second ball is blue. Denoting the balls B1, B2, R1, R2, the set of
possible outcomes in the experiment is

B1B2, B1R1, B1R2

B2B1, B2R1, B2R2,

R1B1, R2B2, R1R2,

R2B1, R2B2, R2R1.

Counting up, we see that E and F each have 6 elements out of the total 12, and so P(E) =
P(F ) = 1

2
. However, we can count in this example that E ∩ F = {B1B2, B2B1} so P(E ∩

F ) = 2/12 = 1/6 < 1
2
· 1

2
. So E,F are not independent. (Naturally so, since the first ball

being blue leaves fewer blue balls, decreasing the odds that the second one is blue.)

We could have reached the same conclusion without enumerating the sample space as
follows. Taking two balls out is the same as randomly labeling the balls 1,2,3,4 and noting
the colors of balls 1 and 2. Since 1

2
the balls are blue, for any one of these labels (1, 2, 3, or

4), chances are 1
2

it will be blue. (Keep in mind, for example, the event that the 2nd labeled
ball is blue includes labelings where the 1st labeled is red.) Thus P(E) = P(F ) = 1

2
. On

the other hand, we can calculate P(E ∩ F ) from the definition of conditional probability
as

P(E ∩ F ) = P(E) · P(F |E).

Given that E occurs (so a blue ball has been removed), there are 3 balls remaining in the
urn, and only 1 is blue. Hence, P(F |E) = 1

3
, and so P(E ∩ F ) = 1

2
· 1

3
= 1

6
.

This way of using conditional probability is the usual way it’s used. (I.e. it is often easier
to calculate P(A|B) than P(A ∩B).)
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What about independence of more than two events? Heuristically, to say A,B,C are
independent means that there is no interaction between them. There is a tricky point
here: it is possible for no one event to influence another, but at the same time two of them
can influence the third.

Example 3.10. Toss a fair coin twice. Let A be the event that the first toss came up heads,
B be the event that the second toss came up heads, and let C be the event that exactly
one of the two coins came up heads. Fairness means A and B are independent: indeed,
A = {HH,HT} has P(A) = 1

2
, B = {HH,TH} has P(B) = 1

2
, and A ∩ B = {HH} has

P(A∩B) = 1
4
. Now, C = {HT, TH} has P(C) = 1

2
, and A∩C = {HT} and B ∩C = {TH}

each has P(A ∩ C) = P(B ∩ C) = 1
4
, so we have

P(A ∩B) = P(A)P(B), P(A ∩ C) = P(A)P(C), P(B ∩ C) = P(B)P(C).

That is, each pair of events (A,B), (A,C), and (B,C) is independent. But notice that if A
and B both occur, then C does not occur: so A and B together influence C!

Example 3.10 highlights the fact that there are multiple ways we might generalize inde-
pendence to many events.

Definition 3.11. Let A1, . . . , An be a collection of events in a probability space. Say they are
pairwise independent if, for all i 6= j, P(Ai ∩ Aj) = P(Ai)P(Aj). Say they are independent
if, for any choice of indices 1 ≤ i1 < i2 < · · · < ik ≤ n for any k = 1, 2, . . . , n,

P(Ai1 ∩ · · · ∩ Aik) = P(Ai1) · · ·P(Aik).

For example, with three events, A,B,C are independent means four conditions:
P(A ∩B) = P(A)P(B)

P(A ∩ C) = P(A)P(C) AND P(A ∩B ∩ C) = P(A)P(B)P(C).

P(B ∩ C) = P(B)P(C)

This last triple-intersection condition is what we did not verify in Example 3.10. Indeed,
it fails in that example: A ∩ B ∩ C = ∅ so P(A ∩ B ∩ C) = 0 in that example, while
P(A)P(B)P(C) = 1

2
· 1

2
· 1

2
= 1

8
.

Another word of caution. Independence for multiple events can fail in the opposite way
from Example 3.10, as the following example shows.

Example 3.12. Let Ω = {1, 2, 3, 4, 5, 6, 7, 8} be a sample space with P(k) = 1
8

for each k.
Consider the events

A = {1, 2, 3, 4}, B = {1, 2, 5, 6}, C = {1, 3, 7, 8}.
Then P(A) = P(B) = P(C) = 1

2
. Now,A∩B∩C = {1} so P(A∩B∩C) = 1

8
= P(A)P(B)P(C).

But B ∩ C = {1} also has probability 1
8

while P(B)P(C) = 1
2
· 1

2
= 1

4
. So these events are

not pairwise independent, though they are “3-wise independent”.
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4. LECTURE 4: OCTOBER 1, 2010

4.1. Independence. To say n events are independent, we must consider all collections of
2, 3, . . . , n − 1, and n events chosen from the list, and verify that the probabilities of all
such intersections are products of the individual probabilities.

In practice, it is usually just the top-level intersection that is (most) important: i.e. the
most-used independence property is

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1)P(A2) · · ·P(An).

Example 4.1. According to the 2009 census, 1 in 6 Americans is Latino/Hispanic. If 6
Americans are chosen randomly and independently, what is the probability at least one of
them is Latino/Hispanic?

Let L be the event that at least 1 of the 6 is Latino/Hispanic. Then Lc is the event that
none are. In other words,

Lc = N1 ∩N2 ∩ · · · ∩N6,

where Nk is the event that the kth person is not Latino/Hispanic. The census data says
that each person in America has a 1− 1

6
= 5

6
chance of being non-Latino/Hispanic. Thus,

by independence,

P(Lc) = P(N1 ∩N2 ∩ · · · ∩N6) = P(N1)P(N2) · · ·P(N6) =
5

6
· 5

6
· · · 5

6
=

(
5

6

)6

≈ 0.33490.

Thus, P(L) = 1− P(Lc) ≈ 0.66510.

Remark 4.2. Actually, since the number of Latino/Hispanics in America at a given time
is fixed and finite, if the first random person is Latino/Hispanic, this slighty reduces the
chances the second one will be. In other words, it is impossible for the selected people to
be truly independent. But since the sample size is over 3 × 108, for calculation purposes
it is fine to ignore this and pretend the sample size is infinite, so that independence is
possible.

In general, if the fraction of people having a certain characteristic L is p, then the chance
that a group of n independently-chosen random people contains no people with charac-
teristic L is

(1− p)n.
So we can ask questions like: how many people do we need before the chance of finding
a person with characteristic L is > 1

2
? Bigger than 0.9? If we want the probability to be

> q, this means we must have

1− (1− p)n > q, or (1− p)n < 1− q.
Taking logarithms, and noting that both 1 − p and 1 − q are in (0, 1) so have negative
logarithms, this means we need

n >
ln(1− q)
ln(1− p)

.

For example, when p = 1
6
, to get q > 1

2
requires n > ln(1− 1

2
)/ ln(1− 1

6
) ≈ 3.8, so 4 people are

required to have better than even odds. To get q > 0.9 requires n > ln(1−0.9)/ ln(1− 1
6
) ≈

12.6, so 13 people are required.
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Example 4.3. Most major sports franchises have a “best of 7” championship. This means
team A and team B face off at least 4 times (and up to 7); the first to win 4 games is the
champion. Let’s assume the teams are evenly matched, so that each game is won by team
A or team B with probability 1

2
. Let’s also ignore factors like home-team advantage, and

“momentum” (whereby a team that has won a few games is more likely, for psychological
reasons, to win future ones). Thus, we model the successive games as independent.

There are two ways the series can be settled in only 4 games: AAAA and BBBB. The
probability of each of these events, by independence, is P(AAAA) = P(BBBB) = (1

2
)4 =

1
16

; hence, the probability that the series ends in 4 games is 2 · 1
16

= 1
8
.

In 5 games, there are 8 possibilities: four each for A and B as champion. Here are the
A-champion possibilities.

BAAAA,ABAAA,AABAA,AAABA.

Note: AAAAB is not valid since the fifth game would not have happened in this case. By
independence, each of these outcomes has probability P(BAAAA) = · · · = P(AAABA) =
(1

2
)4 = 1

32
. So with 8 possible outcomes, the probability that the series ends in 5 games is

8 · 1
32

= 1
4
.

In 6 games there are 20 possibilities; the 10 where A wins are enumerated as follows:

BBAAAA,BABAAA,BAABAA,BAAABA,

ABBAAA,ABABAA,ABAABA,

AABBAA,AABAB,

AAABBA.

Thus, the probability of the series ending in 6 games is 20 · (1
2
)6 = 20

64
= 5

16
.

It is quite messy to enumerate all possible outcomes of the series that go to 7 games. But
we don’t need to, because the series must end in 4, 5, 6, or 7 games. In other words,

P(ends in 4) + P(ends in 5) + P(ends in 6) + P(ends in 7) = 1,

and so

P(ends in 7) = 1− P(ends in 4)− P(ends in 5)− P(ends in 6) = 1− 1

8
− 1

4
− 5

16
=

5

16
.

By the way: we can use this to count the number of outcomes that go to 7 games. Each
such outcome (e.g. BBBAAAA) has probability (1

2
)7 = 1

128
by independence. So if n is the

number of 7-game championship outcomes, we must have

n

128
=

5

16
, therefore n = 40.

Sport 4 game series 5 game series 6 game series 7 game series
Random (∞) 0.125 0.250 0.313 0.313
Basketball (57) 0.122 0.228 0.386 0.263
Baseball (94) 0.181 0.224 0.224 0.372
Hockey (74) 0.270 0.216 0.230 0.284
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The chart above shows the ideal probabilities in this model (rounded to 3 decimal places),
compared to actual statistics from Basketball, Baseball, and Hockey over the last half-
century or more. Basketball appears to be completely random. (You may as well watch
two people tossing a coin 7 times!) The only sport that is statistically significantly different
from random is Hockey. (Oh Canada...)

4.2. Random Variables. In most of the examples we’ve considered, the events are deter-
mined by measuring certain numerical values. These numerical values are called random
variables. They are the bread and butter of all of science - they’re what we measure. In
terms of our formulation of probability, let’s be precise.

Definition 4.4. Let Ω be a sample space. A function X : Ω→ R is called a random variable. In
probability theory (and science in general), typical events are of the form {X = x} or {a ≤ X ≤ b}
for some constants a, b, x ∈ R.

To be clear,
{a ≤ X ≤ b} ≡ {ω ∈ Ω : a ≤ X(ω) ≤ b}.

We might similarly write {X ∈ [a, b]}, or related expressions like {X ≤ x}, {X > x},
defining events in Ω.

Example 4.5. Consider rolling two dice. The sample space Ω is the set of pairs of integers
between 1 and 6, Ω = {(i, j) : i, j ∈ {1, 2, 3, 4, 5, 6}}. a common random variable we’ve
been considering is

X(i, j) = i+ j,

the sum of the dice. This sum can take integer values x = 2 through x = 12; if the dice
are fair, we can easily count that the probabilities of the events {X = x} are given in the
following chart.

x 2 3 4 5 6 7 8 9 10 11 12
P(X = x) 1

36
2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

Example 4.6. A very drunk man walks along a straight sidewalk. Each step he takes, he
chooses randomly (with probability 1

2
either way) whether to go forward or backward.

This so-called random walk is the pre-eminent example of a Markov chain, which will
be discussed in 180B and 180C. Each possible walk, with n steps, can be represented as a
string of n +’s and −’s, each independent with P(+) = P(−) = 1

2
. (In fact, this is the same

as keeping track of tosses of a fair coin). Here are two interesting random variables:

• Xn = his position (in steps) relative to his starting position, after n steps.

The sample space on which Xn is defined is the set of all walks with n steps, a finite
sample space. We can quickly write down the values of X3 for each of the 8 walks of
length 3.

walk + + + + +− +−+ +−− −+ + −+− −−+ −−−
X3 3 1 1 -1 1 -1 -1 -3
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Since the steps are independent, each configuration (e.g. +−+) has probability P(+−+) =

P(+)P(−)P(+) =
(

1
2

)3
= 1

8
. So, we can just count up that

P(X3 = 3) = P(X3 = −3) =
1

8
, P(X3 = 1) = P(X3 = −1) =

3

8
,

while X3 cannot assume any value other than ±1,±3.

• Tk = the length of time (i.e. number of steps n he takes) until Xn = k.

The sample space on which Tk is defined is the set of walks of infinite length (infinite
sequences of +’s and −’s), an infinite sample space. It is much harder to calculate the
probabilities of the events Tk = n for different n. While −n ≤ Xn ≤ n surely, all we can
say for sure is that Tk ≥ k. In fact, Tk can take any integer value ≥ k: the drunkard might
keep moving back and forth and take an arbitrarily long time to get more than k steps
from where he started. There are many walks ω for which Tk(ω) = ∞ (if the drunkard
never manages to get k steps forward; for example ++−−−−−−· · · , +−+−−−−−· · · ,
+ − − + − − −−, etc. all have T3 = ∞). In fact P(Tk = ∞) = 0 (again, wait until 180B to
discuss these details).

4.3. Distributions. Given a random variable on a probability space, we can calculate the
probabilities of different numerical outcomes. For example, the table in Example 4.5 lists
all the probabilities of all possible outcomes of measuring the variable X , the sum of two
dice. From there we can quickly answer questions like: what is the probability that the
sum is more than 8? This is

P(X > 8) = P(X = 9) + P(X = 10) + P(X = 11) + P(X = 12) =
4

36
+

3

36
+

2

36
+

1

36
=

5

18
.

If U is any subset of the possible values for X , we can calculate the probability P(X ∈ U)
accordingly. In fact, P(X ∈ · ) is a new probability, defined on the set of values of X .

Definition 4.7. Let (Ω,P) be a probability space, and let X : Ω→ S be a random variable, where
S ⊆ R is the state space of X . (We might have S = R, or S = [0, 5], or S = {2, 3, 5, 8, 13}, or
S = N, for example.) The function defined on subsets U ⊆ S given by

U 7→ P(X ∈ U)

is a probability on S. It is called the distribution or law of X .

Remark 4.8. The range S of the random variable X is called the state space because the
value of X reports on the state of the system in our experiment. In physical experiments,
we never see the sample space – it is inaccessible to us, abstract. What we measure is the
sample space.

Example 4.9 (Geometric Distribution). Suppose a given experiment has probability p of
success. We repeat independent trials of the experiment until it succeeds. Let N be the
random variable N = number of trials required before success.

The sample space forN can be described by sequences of S (success) and F (failure). Since
we repeat until we succeed (and then stop), the sample space is {S, FS, FFS, FFFS, . . .}
(together with the one infinite string FFFFF · · · ). Thus, the event N = n is just one
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outcome: {N = n} = {FFF · · ·FS} where there are n − 1 F ’s. By independence of the
trials,

P(N = n) = P(FFF · · ·FS) = P(F )P(F )P(F ) · · ·P(F )P(S) = (1− p)n−1p.

When n = 1, P(N = 1) = p. Thus, the distribution of N is the probability on N which
assigns to the number n the probability (1− p)np. Note,

∞∑
n=1

(1− p)n−1p = p

∞∑
n=1

(1− p)n−1 = p

∞∑
k=0

(1− p)k = p
1

1− (1− p)
= 1,

so indeed this distribution is a probability. It is called the geometric distribution on N,
with parameter p.

For example, consider the drunkard’s random walk again. If our experiment is observing
his steps, and “success” is considered “stepping forward”, then the length of time it takes
before his first step forward has a geometric distribution with parameter 1

2
. For instance:

the probability that his first step forward is his 3rd step is (1− 1
2
)2 1

2
= 1

8
.
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5. LECTURE 5: OCTOBER 4, 2010

Example 5.1. Let’s look again at Example 4.1. Suppose we randomly, independently call
people up and ask if they are Latino/Hispanic. If N is the number of people we call until
we find someone who answers affirmatively, then N has a geometric distribution with
parameter 1

6
. Hence, P(N = 6) = (1 − 1

6
)5 1

6
≈ 0.067, less than 7%. But in Example 4.1,

we calculated that the probability of finding a Latino/Hispanic in a random group of 6
people is more than 66%. Is this a contradiction?

No. In Example 4.1, we calculated the probability that at least 1 person in a group of 6 is
Latino/Hispanic. The event N = 6 is much more restrictive: it means only the 6th person
answered yes. In fact, the event that at least 1 answers yes (out of 6 randomly chosen) is the
same as {1 ≤ N ≤ 6}. In general, when N has a geometric distribution with parameter p,
we can calculate

P(1 ≤ N ≤ n) =
n∑
k=1

P(N = k) =
n∑
k=1

(1−p)k−1p = p
n−1∑
`=0

(1−p)` = p
1− (1− p)n

1− (1− p)
= 1−(1−p)n.

This is just as we calculated in Example 4.1; with p = 1
6

and n = 6, we get P(1 ≤ N ≤ 6) =

1− (1− 1
6
)6 ≈ 0.66510.

5.1. Expected Value. Suppose we play a gambling game in which there are n outcomes
ω1, . . . , ωn, with probabilities p1, . . . , pn. Let X be the random variable representing our
winnings in each outcome (so X(ω) is the number of dollars we win if outcome ω occurs).
Note: X(ω) is negative for some outcomes ω. We want to decide whether we should play
the game.

Returning to the frequency interpretation of probability, when we say P(ωk) = pk, we
mean that if we conduct many independent trials of the experiment/game, the fraction
of the time we get outcome ωk is pk. Let’s look at an example.

Example 5.2 (Roulette). In a round of Roulette, there is a wheel with 38 numbered pockets
around the outside edge; 18 are black, 18 are red, and 2 are green. In a basic wager on red,
the wheel is spun, and a ball rotates around eventually falling randomly into one of the
pockets. If the pocket is red, you win $1; otherwise you lose $1.

Let X be the number of dollars you win in one round of Roulette. Then either X = 1 or
X = −1, so the state space is {±1}. Assuming all pockets are equally likely outcomes
(which is physically realistic), P(X = 1) = 18

38
= 9

19
while P(X = −1) = 20

38
= 10

19
; this is the

distribution (or law) of winnings in Roulette.

What happens if you play many rounds of Roulette? Say you play N rounds (for N large)
Then we expect that in about 9

19
N rounds, you win $1, while in 10

19
N rounds, you lose $1.

So, in total, the net money you expect to have ”won” after N rounds is about
9
19
N($1) + 10

19
N(−$1) = −$ 1

19
N.

One way to say this is that over time, you lose $ 1
19
≈ 5.26¢ on average per round.

In Example 5.2, what we calculated (the average winnings per round) is called the ex-
pected value or expectation of the winning random variable.
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Definition 5.3. Let X : Ω → S be a discrete random variable. The expectation or expected
value of X (if it exists), is

E(X) =
∑
ω∈Ω

X(ω)P(ω).

That is: the expectation is the weighted-average of the possible values of X , weighted according to
their likelihoods.

There is an alternative way to write E(X). If we group outcomes according to common
X-value, we get

E(X) =
∑
x∈S

∑
ω∈Ω

X(ω)=x

X(ω)P(ω) =
∑
x∈S

x
∑
ω∈Ω

X(ω)=x

P(ω).

For the inside sum, we are adding up the probabilities of all outcomes in the event {ω ∈
Ω : X(ω) = x}. By additivity of probabilities, we can therefore write

E(X) =
∑
x∈S

xP(X = x). (5.1)

Example 5.4. Let X be the sum of two fair dice. What is the expected value of X? Refer-
ring to the chart on page 14, we have 11 different possible values for X , and so

E(X) = 2 · 1

36
+ 3 · 2

36
+ 4 · 3

36
+ 5 · 4

36
+ 6 · 5

36
+ 7 · 6

36

+ 8 · 5

36
+ 9 · 4

36
+ 10 · 3

36
+ 11 · 2

36
+ 12 · 1

36
= 7.

(In fact, we could have guessed this without adding: the probabilities are symmetric
about the mid-point 7, and in this case the mid-point will always be the expected value.)

In Example 5.4, we used only the distribution of X to calculate E(X). Equation 5.1 shows
that this is true in general: E(X) depends only on the distribution of X . In other words,
if X and Y have the same distribution (but possibly take different values), they will have
the same expectation.

Example 5.5. Let Ω = {1, 2, 3} and S = {−1, 1}. Let P be uniform on Ω. Then the two
random variables

X(1) = X(2) = −1, X(3) = 1; Y (1) = −1, Y (2) = 1, Y (3) = −1

Have the same distribution:

P(X = 1) = P(Y = 1) = 1 = 1
3
,P(X = −1) = P(Y = −1) = 2

3
.

Hence, they have the same expectation:

E(X) = E(Y ) =
1

3
· (1) +

2

3
· (−1) = −1

3
.
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Example 5.6. It is a fact (first calculated by Euler in the 1700s) that
∞∑
n=1

1

n2
=
π2

6
.

Suppose X is an N-valued random variable, with

P(X = n) =
6

π2
· 1

n2
.

(This is possible because the sum of all the P(X = n) is 1.) Then

E(X) =
∞∑
n=1

nP(X = n) =
∞∑
n=1

n · 6

π2
· 1

n2
=

6

π2

∞∑
n=1

1

n
=∞.

So this random variable X has infinite expected value. Worse yet, if Y is a random vari-
able with P(Y = 0) = 0 and P(Y = n) = P(Y = −n) = 3

π2 · 1
n2 , then

E(Y ) =
3

π2

−1∑
n=−∞

1

n2
+

3

π2

∞∑
n=1

1

n2
,

and this sum doesn’t even make sense. So Y does not have an expectation.

Example 5.7. Suppose N is a geometric random variable with parameter p. This means
its distribution is given by

P(N = n) = p(1− p)n−1, n ∈ N.
Then the expectation of N is

E(N) =
∑
n≥0

nP(N = n) =
∞∑
n=0

np(1− p)n−1.

We use calculus to evaluate this sum. Let q = 1− p. Then we think of E(N) as a function
of q:

E(N) = f(q) =
∞∑
n=0

n(1− q)qn−1 = (1− q)
∞∑
n=0

nqn−1.

Noting that nqn−1 = d
dq

(qn), we can write this as

f(q) = (1− q)
∞∑
n=0

d

dq
(qn) = (1− q) d

dq

∞∑
n=0

qn.

The sum is the geometric series, which sums to 1
1−q . Its derivative is 1

(1−q)2 . Hence

E(N) = f(q) = (1− q) d
dq

1

1− q
= (1− q) 1

(1− q)2
=

1

1− q
=

1

p
.

In other words: if we perform an experiment repeatedly, where each trial has probability
p of success, the average time we can expect to wait for the first success is 1/p trials.

Here is a very important property that E has.

Proposition 5.8. If X, Y : Ω → S are random variables and a ∈ R, then E(X + Y ) = E(X) +
E(Y ) and E(aX) = aE(X).
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Proof. From the definition of expectation, this is a simple calculation:

E(X + Y ) =
∑
ω∈Ω

(X + Y )(ω)P(ω) =
∑
ω∈Ω

(X(ω) + Y (ω))P(ω)

=
∑
ω∈Ω

X(ω)P(ω) +
∑
ω∈Ω

Y (ω)P(ω) = E(X) + E(Y ).

Similarly,
E(aX) =

∑
ω∈Ω

(aX)(ω)P(ω) = a
∑
ω∈Ω

X(ω)P(ω) = aE(X).

�

Remark 5.9. Many sources, like Durrett’s book, take Equation 5.1 as the definition of E. If
you do this, then Proposition 5.8 is not at all obvious (and fairly tricky to prove). Our def-
inition is more natural, and is easily seen to be equivalent to Equation 5.1 as we showed
above.

Example 5.10 (China’s one-child policy). One plan China thought to enact to counter their
overpopulation problem was a “one-son” policy (instead of the “one-child” policy they
did adopt). Under this plan, a family could have as many female children as they like,
but only one son. (I.e. once they have a son, they must stop having children.) This plan
was criticized by those who felt it would create a huge imbalance in the genders.

Assume that the probability of either sex is equal, 1
2
, and the genders of siblings are in-

dependent. Then if N is the number of children any family has, N has a geometric dis-
tribution with parameter 1

2
. From Example 5.7, it follows that E(N) = 2. Now, let Nm

and Nf be the number of male vs. female children each family has. Then N = Nm + Nf .
By Proposition 5.8, this means E(Nm) + E(Nf ) = E(N) = 2, and since (by the stopping
condition of the experiment) Nm = 1, we have E(Nf ) = 2 − E(Nm) = 2 − 1 = 1. Hence,
under the one-son policy, the expected numbers of male vs. female children will remain
equal.

One may object that, in reality, a family may stop trying for a boy at a certain point, and so
there will be more girls. So let’s modify the setup. Suppose that each family has children
until a boy arrives, or until they have 4 children. The possible outcomes are

M,FM,FFM,FFFM,FFFF.

By independence, these outcomes have probabilities

P(M) = 1
2
, P(FM) = 1

4
, P(FFM) = 1

8
, P(FFFM) = 1

16
, P(FFFF ) = 1

16
.

Now, the random variables Nm and Nf can be quickly computed:
Nm(M) = Nm(FM) = Nm(FFM) = Nm(FFFM) = 1, Nm(FFFF ) = 0;

Nf (M) = 0, Nf (FM) = 1, Nf (FFM) = 2, Nf (FFFM) = 3, Nf (FFFF ) = 4.

Thus, we calculate
E(Nm) = 1

2
· 1 + 1

4
· 1 + 1

8
· 1 + 1

16
· 1 + 1

16
· 0 = 15

16

E(Nf ) = 1
2
· 0 + 1

4
· 1 + 1

8
· 2 + 1

16
· 3 + 1

16
· 4 = 15

16
.

This is not a miracle: no matter what stopping condition you impose, the expectations of
Nm and Nf will always be the same!
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6. LECTURE 6: OCTOBER 6, 2010

6.1. Functions of Random Variables. Let X : Ω → S be a random variable. Suppose
f : S → R is a function. Then we can compose the two to get a new random variable:

f ◦X = f(X).

f(X) is defined on the same sample space, but its state space (determined by the range of
f ) may be a different subset of R than S.

Example 6.1. Let X be a random variable. Then X2 and X − c are both random variables,
as is (X − c)2, for any constant c.

Example 6.2. Let X : Ω → S be a random variable. For any number x ∈ S, consider the
indicator function 1x : S → R defined by

1x(t) =

{
1, t = x

0, t 6= x

Then 1x(X) is a random variables that takes only two values: 0 and 1. That is, 1x(X)(ω) =
1 if X(ω) = x and 1x(X)(ω) = 0 otherwise. Note, then, that

{1x(X) = 1} = {X = x}.
This will come in handy in Section 7.3.

There is a nice relationship between E(f(X)) and the distribution of X .

Proposition 6.3. Let X : Ω→ S be a random variable and f : S → R a function. Then

E(f(X)) =
∑
x∈S

f(x)P(X = x).

Proof. The random variable Y = f(X) has sample space f(S). Equation 5.1 therefore
asserts

E(Y ) =
∑
y∈f(S)

y P(Y = y).

For each y ∈ f(S), consider the set of all x ∈ S with f(x) = y. We then have

{Y = y} = {f(X) = y} =
⋃

x : f(x)=y

{X = x}.

Hence, P(Y = y) =
∑

x : f(x)=y P(X = x), so

E(Y ) =
∑

y∈f(X)

y
∑

x : f(x)=y

P(X = x) =
∑

y∈f(X)

∑
x : f(x)=y

f(x)P(X = x).

Finally, the double sum is just a way of summing over all x ∈ S, by grouping S into the
blocks of x that all have common f -value. In other words,

E(Y ) =
∑
x∈S

f(x)P(X = x).

�
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Notice: the proposition shows that, for any f , the expectation of f(X) is determined by
the distribution of X (not any particular values). (Later on, we’ll see that the whole dis-
tribution of f(X) is determined by only the distribution of X .)

Example 6.4. Let X be the sum of two fair dice. Let’s calculate E(X2). Proposition 6.3
tells us that

E(X2) =
12∑
n=2

n2 P(X = n).

Referring to the chart on page 14, we can calculate this:

E(X2) = 22 · 1
36

+ 32 · 2
36

+ 42 · 3
36

+ · · ·+ 122 · 1
36

= 545
6
≈ 54.83.

Example 6.4 demonstrates that Proposition 6.3 is quite natural. To paraphrase it: if X
takes values x1, . . . , xn with probabilities p1, . . . , pn then f(X) takes values f(x1), . . . , f(xn)
with probabilities p1, . . . , pn. Thus, the average (expected) value of f(X) is the weighted
average f(x1)p1 + · · ·+ f(xn)pn.

Example 6.5. If X : Ω → S is any random variable and x ∈ S, we can use Proposition 6.3
to compute that

E(1x(X)) =
∑
t∈S

1x(t)P(X = t) = 1 · P(X = x) +
∑
t6=x

0 · P(X = t) = P(X = x).

Since, as we saw, {1x(X) = 1} = {X = x} and {1x(X) = 0} = {X 6= x}, this makes sense.

6.2. Variance. For a given random variable X , the numbers E(Xn) for n = 1, 2, 3, . . . are
called the moments ofX . (They may more may not exist for different n.) The first moment
is just E(X), the expectation. The second moment has special meaning as well – but only
when we remove the first moment contribution.

Definition 6.6. If X is a random variable, the Variance of X , denoted VarX , is the number

VarX = E[(X − E(X))2].

Note that, by the linearity of E (5.8) and the fact that E(E(X)) = E(X) since E(X) is a constant,

VarX = E[X2 − 2E(X)X + E(X)2] = E(X2)− 2E(X)E(X) + E(X)2 = E(X2)− E(X)2.

Example 6.7. Let X be the sum of two fair dice. In Example 6.4, we calculated that
E(X2) = 54f 5

6
. Note also that

E(X) = 2 · 1
36

+ 3 · 2
36

+ 4 · 3
36

+ · · ·+ 12 · 1
36

= 7.

Thus,
VarX = E(X2)− E(X2) = 545

6
− 49 = 55

6
.
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Example 6.8. Let N be a geometric random variable with parameter p ∈ (0, 1). Then

E(N2) =
∑
n≥1

n2P(N = n) =
∞∑
n=1

n2p(1− p)n−1.

To evaluate this sum, we use calculus once again. Setting q = 1− p,

E(N2) = (1− q)
∞∑
n=1

n2qn−1.

We expect derivatives to be involved: this time, two of them. Note that, if n ≥ 2,

d2

dq2
(qn) = n(n− 1)qn−2.

Thus, we should express n2 in terms of n2 − n.

E(N2) = (1− q)
∞∑
n=1

(n2 − n+ n)qn−1 = (1− q)

(
∞∑
n=1

nqn−1 +
∞∑
n=1

(n2 − n)qn−1

)
.

The first term in this sum, (1 − q)
∑∞

n=1 nq
n−1 is equal to E(N) = 1

p
as we calculated in

Example 5.7. In the second sum, note that the first term is 0, since 12 − 1 = 0, and so the
second sum is

(1− q)
∞∑
n=2

n(n− 1)qn−1 = (1− q)q
∞∑
n=2

n(n− 1)qn−2 = (1− q)q
∞∑
n=2

d2

dq2
qn.

Now, d2

dq2 (1 + q) = 0, and so we can rewrite this as

E(N2) =
1

p
+ (1− q)q d

2

dq2

∞∑
n=0

qn =
1

p
+ (1− q)q d

2

dq2

1

1− q

=
1

p
+ (1− q)q · 2

(1− q)3
=

1

p
+

2q

(1− q)2
.

Subbing in q = 1− p yields

E(N2) =
1

p
+

2(1− p)
p2

=
2− p
p2

.

Thus,

VarN = E(N2)− E(N2) =
2− p
p2
−
(

1

p

)2

=
1− p
p2

.

Notice that in Examples 6.7 and 6.8, the variance was positive. Actually, this is always
true by definition: since (X − E(X))2 ≥ 0, it follows that VarX = E[(X − E(X))2] ≥ 0.

It is possible, however, for VarX to equal 0.
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Example 6.9. Let X = c be a constant random variable. Then E(X) = c, so X − E(X) =
c− c = 0. Thus, (X − E(X))2 = 0, and so VarX = 0.

Actually, this is the only way VarX can possibly equal 0. For let E(X) = c. If X is not
constant, then there is some number x 6= c in the sample space such that P(X = x) > 0.
But then the random variable Y = (X − c)2 is > 0 on the set {X = x}, and so

VarX = E(Y ) =
∑
t

(t− c)2P(X = t) ≥ (x− c)2P(X = x) > 0.

Thus: a random variable X is a constant if and only if VarX = 0.

Definition 6.10. The standard deviation of a random variable X , denoted σ(X), is

σ(X) =
√

VarX.

Standard deviation is supposed to be a measure of how “spread-out” the distribution of
X is. Nearer the end of the course, we’ll discuss statements like that. For now, a word of
caution. You may have heard statistics like “68% of the distribution is within one standard
deviation of the mean, and 95% is within two standard deviations”. These statements are
generally false. (The sense in which they are, in some cases, approximately true, has to
do with the Central Limit Theorem, our final topic in the course.) The statements are
trying to quantify the following:

P(|X − E(X)| ≤ z · σ(X)),

where z is a positive number (i.e. the number of standard deviations). The claims above
are that with z = 1 this probability is about 0.68, and with z = 2 it’s about 0.95. But we
can see from many of the examples we’ve done that these statements are quite false.

Example 6.11. Let N be a geometric random variable with parameter p. In Example 5.7,
we calculated that E(N) = 1

p
, and in Example 6.8 we saw that VarN = 1−p

p2 , so σ(N) =
√

1−p
p

. To fix some numbers, let’s take p = 1
2
, so E(N) = 2 and σ(N) =

√
2. Then the

quantities we’re interested in are

P(|N − 2| ≤ z ·
√

2).

For example, with z = 1, |N − 2| ≤
√

2 < 1.5 means 1 ≤ N ≤ 3 since N is positive-integer
valued, and this probability is

P(|N − 2| ≤ 1) = P(1 ≤ N ≤ 3)

= P(N = 1) + P(N = 2) + P(N = 3) = 1
2

+
(

1
2

)2
+
(

1
2

)3
= 7

8
= 0.875.

Similarly, with z = 2, |N − 2| ≤ 2
√

2 < 2.9 is the same as 1 ≤ N ≤ 4 (since N ≥ 1 always),
and this set has probability 15

16
= 0.9375. Neither matches the commonly quoted statistic.

Example 6.12. Consider a random variable X : Ω → {−1, 0, 1} with distribution P(X =
±1) = 0.405 and P(X = 0) = 0.19. Then

E(X) = 0.405(−1)+0.1(0)+0.405(1) = 0, E(X2) = 0.405(−1)2+0.1(0)2+0.405(1)2 = 0.81.

Hence VarX = 0.81− 0 and so σ(X) =
√

0.81 = 0.9. Thus, P(|X − 0| ≤ 0.9) = P(X = 0) =
0.19 is quite small, while P(|X − 0| ≤ 2 · 0.9) = 1 is certain.
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7. LECTURE 7: OCTOBER 8, 2010

7.1. Independence of Random Variables. In scientific experiments, the basic assump-
tion is that different trials are independent. In practice, we measure some random vari-
able in each trial, so what is important is that the random variables are independent. What
does this mean? Remember: typical events are of the form X = x for some value x.

Definition 7.1. Let X1, . . . , Xn be random variables defined on the same sample space Ω, with
discrete state space S. They are said to be independent if, for any choice of numbers x1, . . . , xn
in S, the events {X1 = x1}, . . . , {Xn = xn} are independent. In other words,

P(X1 = x1, . . . , Xn = xn) = P(X1 = x1) · · ·P(Xn = xn).

The notation P(X1 = x1, . . . , Xn = xn) is shorthand for P({X1 = x1} ∩ · · · ∩ {Xn = xn}).

Example 7.2. Roll three fair dice. LetX1, X2, X3 be the numbers on each of the three. Then
for any x1, the event X1 = x1 describes 36 outcomes (all possible rolls for the other two
dice), so P(X1 = x1) = 36

63 = 1
6
. The same is true for the events X2 = x2 and X3 = x3.

Now, the event {X1 = x1} ∩ {X2 = x2} ∩ {X3 = x3} describes exactly one outcome (the
roll x1x2x3) out of the possible 63. Hence,

P(X1 = x1, X2 = x2, X3 = x3) =
1

63
= P(X1 = x1)P(X2 = x2)P(X3 = x3),

and so the random variables X1, X2, X3 are independent.

Similar calculations show that the random variables giving the values of n fair coin tosses
are independent. These are the canonical kinds of examples of independent random vari-
ables.

Example 7.3. Roll three fair dice. Let Sij be the sum of die i and die j; that is, Sij = Xi+Xj

from Example 7.2. Then S12, S23, S31 are not independent random variables. For example,
consider the events {S12 = 2}, {S23 = 2}, {S31 = 2}. The event {X1 + X2 = 2} can only
occur if X1 = X2 = 1, and this event has probability 1

62 . Similarly P(S23 = 2) = P(S31 =

2) = 1
62 . But the event {S12 = S23 = S31 = 2} can only occur if X1 = X2 = X3 = 1, and this

even has probability 1
63 . Thus

P(S12 = 2, S23 = 2, S31 = 2) =
1

63
6=
(

1

62

)3

= P(S12 = 2)P(S23 = 2)P(S31 = 2).

These events are also not pairwise independent. The event {S12 = S23 = 2} again contains
only the single outcome X1 = X2 = X3 = 1 and so has probability P(S12 = 2, S23 = 2) =
1
63 , whereas P(S12 = 2)P(S23 = 2) = 1

62 · 1
62 = 1

64 .

Example 7.4. If a fair coin is tossed twice, let Y1, Y2 record the values of the tosses (where
heads is 1 and tails is 0). Then Y1 and Y2 are independent (same type of argument as in
Example 7.2). Now, let Y3 = Y1 + Y2. Since Y3 is determined by Y1 and Y2, we should
expect that Y1, Y2, Y3 are not independent. Indeed, the events A = {Y1 = 1}, B = {Y2 = 1},
and C = {Y3 = 1} are the events described in Example 3.10, which we noted are not
independent. On the other hand, as we showed in that example, the events A,B,C are
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pairwise-independent. In fact, if we take the sum modulo 2 (that is, Y3 = Y1 + Y2 except in
the case Y1 = Y2 = 1 in which case we define Y3 = 0) this is true for any values of the three
variables, and so Y1, Y2, Y3 are pairwise independent. This makes sense, too: consider Y1

and Y1 +Y2. Since Y1, Y2 are independent, knowing the value of Y1 gives us no information
about the value of Y1 + Y2 (mod 2).

7.2. Sums of Independent Random Variables. If X, Y are random variables, and you
know their distributions, what can you say about the distribution of X + Y ?

Example 7.5. Suppose X has sample space {±1} with distribution P(X = ±1) = 1
2
. Then

{−X = ±1} = {X = ∓1}, so P(−X = ±1) = 1
2

as well – i.e. X and −X has the same
distribution. Let Y1 = X and Y2 = −X . Let Y3 be a different random variable with
this same distribution P(Y3 = ±1) = 1

2
, such that X, Y3 are independent. Then we can

calculate:
X + Y1 = X +X = 2X, P(X + Y1 = ±2) =

1

2
X + Y2 = X −X = 0, P(X + Y2 = 0) = 1.

So, even though Y1, Y2 have the same distribution, X + Y1 and X + Y2 have very different
distributions. Things are different again with Y3. Since X = ±1 and Y3 = ±1, there are
four possibilities for the values of the two. Independence yields

P(X = 1, Y3 = 1) = P(X = 1)P(Y3 = 1) = 1
2
· 1

2
= 1

4

P(X = 1, Y3 = −1) = P(X = 1)P(Y3 = −1) = 1
2
· 1

2
= 1

4

P(X = −1, Y3 = 1) = P(X = −1)P(Y3 = 1) = 1
2
· 1

2
= 1

4

P(X = −1, Y3 = −1) = P(X = −1)P(Y3 = −1) = 1
2
· 1

2
= 1

4
.

So the possible values for X+Y3 are 1 + 1 = 2, 1 + (−1) = (−1) + 1 = 0, and (−1) + (−1) =
−2. They have probabilities

P(X + Y3 = 2) = P(X = 1, Y3 = 1) = 1
4

P(X + Y3 = 0) = P(X = 1, Y3 = −1) + P(X = −1, Y3 = 1) = 1
2

P(X + Y3 = −2) = P(X = −1, Y3 = −1) = 1
4
.

All in all, we have three random variables Y1, Y2, Y3 all with the same distribution, but the
distributions of X + Y1, X + Y2, X + Y3 are all distinct. They even have different ranges:
{±2} for the first, {0} for the second, and {0,±2} for the third.

Example 7.5 demonstrates that adding random variables doesn’t just add their distribu-
tions. In general the distribution of X + Y depends not only on the distributions of X, Y
but also on the values of the variables. We will discuss this at greater length later in the
quarter, when we talk about joint distributions.

There is one case where the distribution of a sum X + Y is completely determined by
the distributions of X and Y ; we saw a case of it in Example 7.5 with X, Y3. This is the
case when X, Y are independent random variables.

Theorem 7.6. Let X, Y : Ω→ S be independent random variables with discrete sample spaces S.
Then

P(X + Y = t) =
∑
x∈S

P(X = x)P(Y = t− x).
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Proof. Since X, Y take values in S, the event {X + Y = t} can be broken up as a union

{X + Y = t} =
⋃
x∈S

{X = x} ∩ {Y = t− x}.

This is a disjoint union. Thus

P(X + Y = t) =
∑
x∈S

P(X = x, Y = t− x).

By the independence of X, Y , P(X = x, Y = t− x) = P(X = x)P(Y = t− x), proving the
theorem. �

The importance of Theorem 7.6 is that, in order to calculate the probability that the sum
X + Y = t for some t, you only need to know the quantities P(X = x) and P(Y = y) for
x, y ranging through the sample space; i.e. you only need to know the distributions of X
and Y .

Example 7.7. Let’s look again at the sum X of two fair dice. Let X1, X2 be the numbers on
the dice; then X1, X2 are independent (following Example 7.2). We can use Theorem 7.6
to quickly calculate the distribution of X . For example,

P(X = 8) = P(X1 +X2 = 0) =
6∑

x=1

P(X1 = x)P(X2 = 8− x)

= P(X1 = 1)P(X2 = 7) + P(X1 = 2)P(X2 = 6) + P(X1 = 3)P(X2 = 5)

+ P(X1 = 4)P(X2 = 4) + P(X1 = 5)P(X2 = 3) + P(X1 = 6)P(X2 = 2).

The first term P(X1 = 1)P(X2 = 7) = 0 of course, since X2 6= 7. Each of the other terms
is the product 1

6
· 1

6
= 1

36
, and there are 5 terms, so P(X = 8) = 5

36
, as we have calculated

before.

7.3. Independence and Expectation. If X is a random variable and x ∈ R, we can write
the event {X = x} as {1x(X) = 1}. This means, as we saw in Example 6.5, that

E(1x(X)) = P(X = x).

Now, let X, Y be random variables, and x, y numbers. Consider the function 1x(X)1y(Y ).
Since 1x(X) = 0 unlessX = x, and 1y(Y ) = 0 unless Y = y, this product = 0 unlessX = x
and Y = y, in which case it is 1. Thus,

E(1x(X)1y(Y )) = 1 · P(X = x, Y = y) + 0 · P(· · · ) = P(X = x, Y = y).

Putting these together, we have the following rewriting of the definition of independence
of random variables.

Lemma 7.8. Let X1, . . . , Xn be (discrete) random variables. They are independent if and only if,
for any numbers x1, . . . , xn,

E[1x1(X1) · · ·1xn(Xn)] = E[1x1(X1)] · · ·E[1xn(Xn)].
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This is a nice kind of algebraic way of expressing things. But we can do better than this.
Lets look at a more complicated function than 1x; consider the function f = 1x1 − 31x2 .
(This is just a funny way to write the function f defined by f(x1) = 1, f(x2) = −3, and
f(x) = 0 for all x 6= x1, x2.) If X and Y are independent, then for any y, Proposition 5.8
allows us to expand

E[f(X)1y(Y )] = E[(1x1(X)− 31x2(X))1y(Y )] = E[1x1(X)1y(Y )]− 3E[1x2(X)1y(Y )].

By independence, these terms factor as

E[1x1(X)]E[1y(Y )]− 3E[1x2(X)]E[1y(Y )].

Now we can collect terms to get

(E[1x1(X)]− 3E[1x2(X)]) · 1y(Y ).

Applying Proposition 5.8 again, we have

E[1x1(X)]− 3E[1x2(X)] = E[1x1(X)− 31x2(X)] = E[f(X)].

Combining everything, what we have is

E[f(X)1y(Y )] = E[f(X)]E[1y(Y )].

So this factorization works for linear combinations of indicator functions too; and it
would work just as well in the Y variable.

But this gets us all functions (in the discrete case). For the sample space is at most count-
able, S = {x1, x2, x3, . . .}, and so for any function f : S → R, if we let yn = f(xn), we can
rewrite the formula for f as

f =
∞∑
n=1

yn1xn .

So doing calculations like the ones above, and using Lemma 7.8, gives us the following
beautiful restatement of independence of random variables.

Theorem 7.9. LetX1, . . . , Xn : Ω→ S be discrete random variables. They are independent if and
only if, for any functions f1, . . . , fn : S → R,

E[f1(X1) · · · fn(Xn)] = E[f1(X1)] · · ·E[fn(Xn)].
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8. LECTURE 8: OCTOBER 11, 2010

Recall the wonderful restatement of independence of random variables from last time:
random variables X, Y : Ω→ S are independent if, for all functions f, g : S → R

E[f(X)g(Y )] = E[f(X)]E[g(Y )].

Example 8.1. Let’s take another look at Example 6.4. There we calculated the expectation
of X2 where X is the sum of two fair dice. Another approach is as follows. Let X1, X2

be the values of the two dice; then X1, X2 are independent (following Example 7.2), and
X = X1 +X2. Then X2 = X2

1 +X1X2 +X2
2 and so

E(X2) = E[X2
1 + 2X1X2 +X2

2 ] = E[X2
1 ] + 2E[X1][X2] + E[X2

2 ],

where the second equality follows from Proposition 5.8 and Theorem 7.9. Note that X1

and X2 each have the uniform distribution on {1, 2, 3, 4, 5, 6}, so

E(X1) = E(X2) = 1 · 1
6

+ 2 · 1
6

+ · · ·+ 6 · 1
6

= 21
6

= 31
2
.

Similarly
E(X2

1 ) = E(X2
2 ) = 12 · 1

6
+ 22 · 1

6
+ · · ·+ 62 · 1

6
= 91

6
= 151

6
.

Thus,
E(X2) = 151

6
+ 2(31

2
)(31

2
) + 151

6
= 545

6
,

confirming our earlier answer.

Theorem 7.9 gives us many very important computational tools; here is one of the most
useful.

Proposition 8.2. Let X1, . . . , Xn be independent random variables. Then

Var(X1 + · · ·+Xn) = VarX1 + · · ·+ VarXn.

Proof. We’ll just verify this for n = 2; in general, the calculation is the same but more
tedious. We have

(X1 +X2)2 = X2
1 +X2

2 + 2X1X2.

Hence, by independence,

E[(X1 +X2)2] = E[X2
1 ] + E[X2

2 ] + 2E[X1]E[X2]. (8.1)

On the other hand,

(E[X1 +X2])2 = (E[X1] + E[X2])2 = E[X1]2 + 2E[X1]E[X2] + E[X2]2. (8.2)

Subtracting (8.2) from (8.1), we get

Var(X1 +X2) =
(
E[X2

1 ] + E[X2
2 ]− 2E[X1]E[X2]

)
−
(
E[X1]2 + 2E[X1]E[X2] + E[X2]2

)
=
(
E(X2

1 )− E(X1)2
)

+
(
E(X2

2 )− E(X2)2
)

= VarX1 + VarX2.

�
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Remark 8.3. If we hadn’t assumed independence, that calculation shows that

Var(X1 +X2) = VarX1 + VarX2 + E(X1X2)− E(X1)E(X2).

This correction term is called the covariance of X1 and X2; that is,

Cov(X, Y ) = E(XY )− E(X)E(Y ).

If X, Y are independent then Cov(X, Y ) = 0. But the converse is false. In general, the
result of Proposition 8.2 holds under the weaker assumption that the covariances of all
pairs of variables X1, . . . , Xn are 0. In this case the random variables are said to be uncor-
related, which is weaker than independent.

Example 8.4. Suppose that X1, X2, X2, . . . , Xn are independent, and all have the same
Variance σ2. Then if Sn = X1 + · · · + Xn, VarSn = VarX1 + · · · + VarXn = nσ2. Thus the
standard deviation σ(Sn) =

√
nσ. I.e. the standard deviation of an independent sum of

n variables grows at the rate
√
n.

Example 8.5. Let X1, X2, . . . , Xn be independent random variables, all with the same
distribution. (We call them i.i.d.: independent and identically distributed.) Let An =
1
n
(X1 + · · ·+Xn), the (empirical) average. Then we can calculate

VarAn =
1

n2
Var(X1 + · · ·+Xn) =

1

n2
(VarX1 + · · ·+ VarXn) =

1

n2
· n · VarX1.

So σ(An) = 1√
n
σ(X1). Now, we can ask the question: how likely is it that An is at most z

standard deviations from its expected value?

P[|An − E(An)| ≤ z · σ(An)]

Since E(An) = 1
n
(E(X1) + · · ·+ E(Xn)), we can rewrite this as

P
(∣∣∣ [X1−E(X1)]+···+[Xn−E(Xn)]

n

∣∣∣ ≤ z · 1√
n
σ(X1)

)
.

Multiplying through by n gives us

P
(
|[X1 − E(X1)] + · · ·+ [Xn − E(Xn)]| ≤ z ·

√
n · σ(X1)

)
.

Since X1 − E(X1), . . . , Xn − E(Xn) are all independent, we can actually use Theorem 7.6
to evaluate this quantity. This will be the end-goal of the course. Remarkably, it turns out
that as n grows, this number doesn’t depend much on the distribution of X1, and also
doesn’t depend much on n. In fact, we will eventually prove the Central Limit Theorem
which says that this number is approximately equal to

P[|An − E(An)| ≤ z · σ(An)] ≈
∫ z

−z

1√
2π
e−x

2/2 dx, n large.

With z = 1, this gives about 0.68, and with z = 2, this gives about 0.95. This is where
those statistics come from. They do not hold for any given random variable, but they do
hold (approximately) when a bunch of independent copies of a given random variable are
averaged.
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8.1. Combinatorial Tools in Probability. In finite probability spaces (or at least with ran-
dom variables with finite state spaces), lots of counting problems arise. There are some
basic counting tools we’ll use often. Combinatorics is a term for a branch of mathematics
that has a lot to do with counting the number of elements in sets with some nice struc-
tures. Let’s proceed with some examples.

Example 8.6. In the television program Dancing with the Stars, 12 celebrities compete over the
course of a season; at the end, through various competitions, all 12 are ranked 1 through 12. In
how many possible ways can the 12 be ranked?

The question is the same as asking “how many ways are there to order 12 objects”? We
begin by given the 12 objects names a1, . . . , a12. To order them, we must pick one of them
ai to be first; there are 12 such choices. Now, we must pick one to be second, out of the
remaining objects a1, . . . , ai−1, ai+1, . . . , a12. Hence, there are 11 choices here. We must
pick a third one from the remaining 10. Continuing this way, we see that the number of
such orderings is

12 · 11 · 10 · · · 3 · 2 · 1 = 479, 001, 600.

In general, the numbers of orders of n objects is denoted n!, n factorial.

n! = n · (n− 1) · (n− 2) · · · 3 · 2 · 1.
Thus number grows very quickly with n; a famous approximation is Stirling’s formula,

n! ≈
√

2πn
(n
e

)n
,

which holds in the sense that the ratio of n! to Stirling’s approximation tends to 1 as
n→∞.

Example 8.7. In the NHL, there are 30 teams: 15 Eastern Conference and 15 Western Conference.
Only 8 teams from each conference will make the playoffs; they will be ranked 1 through 8 based
on their win-loss-tie record during the 82 regular-season games. This ranking will determine who
is matched with whom in the play-offs; it is called the playoff lineup. How many possible playoff
lineups are there for the Western Conference?

The analysis is much the same as in Example 8.7. There are 15 teams, and we must choose
8 of them and order them 1 through 8. So we have 15 choices for #1; once this one is
selected, there are 14 choices for #2, and so forth. But we are not choosing all 15 teams;
once we have chosen 7 teams to rank #1 through #7, there are 8 teams left, and we choose
one of them to be the #8 ranked team, and then we’re done. Thus, the number of Western
Conference playoff lineups is

15 · 14 · 13 · 12 · 11 · 10 · 9 · 8 = 259, 459, 200.

Note: the fact that we went down to 8 is not because there are 8 teams; it is because
15 − 8 = 7, so we must select all but 7 teams; it just so happens that this means the last
factor is 8. If we were selecting 8 teams out of 16, we would have multiplied 16·15 · · · 10·9.

In general, the number of ways of selecting and ordering k objects from a list of n ≥ k
objects is

n · (n− 1) · (n− 2) · · · (n− k + 2) · (n− k + 1).
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We call this n permute k, and denote it nPk or Pn,k. Note, we can write this in terms of
factorials, since

n! = n · (n− 1) · (n− 2) · · · (n− k + 2) · (n− k + 1) · (n− k) · · · 3 · 2 · 1
= n · (n− 1) · (n− 2) · · · (n− k + 2) · (n− k + 1) · (n− k)! = nPk · (n− k)!,

and so

nPk =
n!

(n− k)!
.

Example 8.8. (Refer to Example 8.7) Anything can happen once the playoffs start. Suppose we
forget about the ranking of the 8 teams, and only want to know how many different combinations
of 8 teams are possible.

To work this out, we combine the last two examples. If we do count different rankings
of the 8 teams as different, we get 15P8 possibilities. Now, if we forget about different
orderings, then many of these configurations are really the same as far as we’re con-
cerned? How much have we overcounted? Let’s select 8 particular teams we care about:
the Flames, the Oilers, the Canucks, the Red Wings, the Blackhawks, the Ducks, the Kings,
and the Sharks. Among the 15P8 possible playoff lineups, how many have exactly these
teams? The number of ways of ordering them is 8!, and so all 8! orderings appear, and
these are the only ways these exact 8 teams can appear.

This is true for any collection of 8 teams. Hence, when counting with order mattering,
15P8 overcounts the number of unordered lineups by a factor of 8! = 40320. Thus, the
number of possible combinations of teams in the playoffs is

15P8

8!
=

259, 459, 200

40320
= 6435.

In general, the number of combinations of k objects out of n ≥ k (i.e. the number of ways
of selecting k objects out of n, not caring about their order) is

nPk
k!

=
n!

k!(n− k)!
=
n · (n− 1) · · · (n− k + 1)

k!
.

It is denoted nCk, or Cn,k, or (most commonly)
(
n
k

)
.

Let’s revisit an old example.

Example 8.9. In Example 4.3, we counted the number of ways that a team can win a best-
of-7 championship tournament (such as in the NHL) in exactly 4 games, or 5 games, or 6
games, or 7 games. There, we did it ”by hand” (by writing out all possibilities). But with
these new combinatorial tools, it’s quite a bit easier.

In order for Team A to win in 7 games, they must win the 7th game, and then 3 other
games selected from the first 6. Since the 7th game is fixed as an A-win, this means the
number of tournaments in which they win can be counted by the number of ways they
can win exactly 3 out of the first 6; i.e.(

6

3

)
=

6 · 5 · 4
3 · 2 · 1

= 20.
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For team A to win in 6 games, on the other hand, means they win the 6th game and 3 of
the first 5. Hence, the number of such tournaments is(

5

3

)
=

5 · 4 · 3
3 · 2 · 1

= 10.

Both of these confirm our earlier results. Moreover, we can count for much larger tourna-
ments now: in a best-of-11, the winner is the first to win 6 games. The number of ways
team A wins in 9 games is (since they must win the 9th game and some combination of 5
of the first 8) (

8

5

)
=

8 · 7 · 6
5!

= 56.
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9. LECTURE 9: OCTOBER 13, 2010

9.1. Poker. The permutation and combination formulas make it easy to analyze proba-
bilities in well-known card games, like Poker.

Example 9.1. A standard deck of 52 cards is well-shuffled. Seven cards are dealt to each player
(this is called Seven Card Stud). What are the odds that your hand contains a pair? Three-of-a-
kind? A full house?

The number of possible combinations of 7 cards is
(

52
7

)
= 133, 784, 560. Saying that the

deck is well-shuffled is exactly to say that each of these possible hands is equally likely
to have been dealt to any given player. So we need only count the number of hands that
contain a pair, or three of a kind, or a full house.

• A pair. This means exactly two of the cards have the same value. There are 13
values for the card (A, 1, 2, . . . , J, Q, K). The two will have two different suits chosen
from among the 4 suits; this can be done in

(
4
2

)
= 6 ways. Since we are looking for

a pair and nothing else, the only other constraint is that the 5 remaining cards not
have matching values, and none should have the same value as the pair already
found. So we choose 5 different values from the 12 remaining ones, in

(
12
5

)
ways,

and assign each of them one of the four suits, in 45 ways. Thus, the number of
hands containing exactly (and only) a pair is

13 ·
(

4

2

)
·
(

12

5

)
· 45 = 63, 258, 624.

So, the odds of getting a pair (and nothing else) are

63, 258, 624

133, 784, 560
≈ 47.3%.

Three of a kind. The analysis is similar to “a pair”. There are 13 values, with 3 suits,
giving us 13 ·

(
4
3

)
. The other 4 cards have distinct values, different from the one already

chosen, with 4 suits; this gives
(

12
4

)
· 44. Thus, the odds of 3 of a kind are

13 ·
(

4
3

)
·
(

12
4

)
· 44(

52
7

) ≈ 4.9%.

A full house. This means a pair and three of a kind. We choose one value (out of 13) for
the pair, and two suits

(
4
2

)
; we choose a second value (out of 12) for the three of a kind,

and three suits
(

4
3

)
; the two remaining cards have distinct values chosen from among the

remaining 11, giving
(

11
2

)
, with two suits, 42. Thus, the odds of a full house are

13 ·
(

4
2

)
· 12 ·

(
4
3

)
·
(

11
2

)
· 42(

52
7

) ≈ 2.5%.

Example 9.2. In Texas Hold’em Poker, each player is dealt 2 cards. 3 “community cards” (called
“the flop”) are dealt face up in the middle, and betting begins. In the course of betting, 2 more
cards (“the turn” and “the river”) are dealt face up.
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Suppose your two cards are both hearts, and two of the flop cards are also a hearts. What are the
odds you will get a flush: five cards out of the 7 (your two plus the community cards) having the
same suit? What if only one of the flop cards was a heart?

• 2 hearts in the flop. The values of 5 cards are known to you – your two, and
the flop. There are 13 hears in total, and 4 of them are among the 5 face-up. The
remaining 47 cards include 13−4 = 9 hearts, and so contain 47−9 = 38 non-hearts.
There are

(
47
2

)
= 1081 ways the final two cards can be chosen; of those,

(
38
2

)
have

both non-hearts. Hence, the odds that at least one heart will come up as the turn
or the river (thus giving you a flush) are

1−
(

38
2

)(
47
2

) ≈ 35.0%.

• 1 heart in the flop. This time the remaining 47 cards include 13 − 3 = 10 harts,
and 37 non-hearts. We need both the turn and the river to be hearts; this can only
happen in

(
10
2

)
ways. So the odds of a flush of hearts in this scenario are quite

bleak: (
10
2

)(
47
2

) =
45

1081
≈ 4.2%.

9.2. More than two Categories. We can also use the coefficients
(
n
k

)
to count the number

of ways of dividing a group into more than two pieces.

Example 9.3. In a house with 12 rooms, we want to paint 3 of them red, 4 of them white, and 5 of
them blue. How many ways can we do this?

First pick 3 of the rooms to be red; this can be done in
(

12
3

)
ways. From the remaining

12−3 = 9 rooms, select 4 to be painted white; this can be done in
(

9
4

)
ways. The remaining

5 rooms will get painted blue, as required. Thus, the number of painting configurations
is (

12

3

)
·
(

9

4

)
=

12!

3!9!
· 9!

4!5!
=

12!

3!4!5!
= 27720.

Note, we could, instead, have painted first the white rooms, then the blue rooms, and left
the red for last; had we counted this way, we would have gotten(

12

4

)
·
(

8

5

)
=

12!

4!8!
· 8!

5!3!
=

12!

3!4!5!
.

Naturally, we had to get the same answer. This also shows us a more general combination-
counting tool.

In general, the number of ways of dividing a set of n objects into m ≤ n groups of sizes
n1, n2, . . . , nm (meaning n1 + · · ·+ nm = n) is denoted

(
n

n1 n2 ··· nm

)
. It is equal to(

n

n1 n2 · · · nm

)
=

n!

n1! · · ·nm!
.

It is easy to check that(
n

n1 n2 · · · nm

)
=

(
n

n1

)
·
(
n− n1

n2

)
·
(
n− n1 − n2

n3

)
· · ·
(
n− n1 − n2 − · · · − nm−1

nm

)
,
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which (following Example 9.3) is how we come up with the general formula.

The coefficients
(
n
k

)
are often called binomial coefficients; this is due to their appearance

in the binomial theorem (Theorem 10.4, next Lecture). The coefficients
(

n
n1 n2 ··· nm

)
care

called multinomial coefficients, as they appear in the multinomial theorem, Theorem
10.6 (a generalization of the binomial theorem, also covered next lecture).

9.3. Binomial and Poisson Distributions. Recall the geometric distribution: if an exper-
iment with success probability p is repeated, the probability that it takes n trials for a
success to occur is p(1 − p)n−1. Suppose instead we ask a more scientifically relevant
question. Suppose we perform n trials (continuing whether or not some succeed or fail).
What is the probability that a specific number k of the trials succeed?

The sample space should be modeled as all sequences SSFSFFSFFFFSFSSSFSFS
of successes and failures, of length n. For any such outcome, if there are k successes
and n− k failures, since the trials are independent, the probability of such an outcome is
pk(1 − p)n−k. Now, the event “there are exactly k successes” means that we must choose
k of the trials to be S, and the remaining n − k to be F . This can be done in precisely

(
n
k

)
ways. Hence: if Nn,p counts the number of successful trials among n, then

P(Nn,p = k) =

(
n

k

)
pk(1− p)n−k.

This is called the binomial distribution, binomial(n, p). Since there are only n trials,Nn,p is
a random variable with state space {0, 1, . . . , n}. We can quickly check from the binomial
theorem that

n∑
k=0

P(Nn,p = k) =
n∑
k=0

(
n

k

)
pk(1− p)n−k = (p+ (1− p))n = 1n = 1.

Hence, binomial(n, p) really is a probability distribution. We can compute its expected
value, either brute force, or more cleverly as follows. For i = 1, . . . , n, let Xi be a random
variable, Xi = 1 if the ith trial is a success, Xi = 0 if the ith trial is a failure. Then
Nn,p = X1 + · · · + Xn. Note that P(Xi = 1) = p and P(Xi = 0) = (1 − p), so E(Xi) = p.
Hence, E(Np,n) = E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn) = np.

We can also calculate the variance, by noting that these random variables Xi are indepen-
dent (since the trials are). Hence

Var(Nn,p) = Var(X1 + · · ·+Xn) = Var(Xn) + · · ·+ Var(Xn).

Each of the variables Xi has

E(X2
i ) = p(1)2 + (1− p)(0)2 = p,

and so Var(Xi) = E(X2
i )− E(Xi)

2 = p− p2. Thus, Var(Nn,p) = np(1− p). Let’s record this
for posterity:

If Nn,p is binomial(n, p), then E(Nn,p) = np, Var(Nn,p) = np(1− p).
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Example 9.4. A student guesses randomly on a multiple choice test with 5 questions (each with
4 choices). What are the odds he will pass (i.e. get at least 3 correct)?

The number N of questions he answers correctly is a binomial(5, 1
4
) random variable; so

the probability that he answers exactly k correct is

P(N = k) =

(
5

k

)(
1

4

)k (
3

4

)5−k

.

We want to calculate P(N ≥ 3) = P(N = 3) + P(N = 4) + P(N = 5). This is

P(N ≥ 3) =

(
5

3

)(
1

4

)3(
3

4

)2

+

(
5

4

)(
1

4

)4(
3

4

)
+

(
5

5

)(
1

4

)5

=
53

512
≈ 10.4%.

Next time, he should probably study!

In example 9.4, we had to do a fair amount of arithmetic. It might have been a lot worse:
if the quiz had had 15 questions, calculating the odds he gets at least 8 correct means
adding up 8 terms, each of which involves calculating a binomial coefficient

(
15
k

)
. This

can get hard quickly. To help with such problems, there is a different distribution which
is a very good approximation of binomial(n, p) for large n and small p.

Definition 9.5. Let λ > 0. The Poisson distribution Poisson(λ), is a probability distribution
on the natural numbers N = {0, 1, 2, . . .}. The distribution is as follows: a random variable X is
Poisson(λ) if, for each k ∈ N,

P(X = k) = e−λ
λk

k!
, for k = 0, 1, 2, . . .

Note that, if X is Poisson(λ), then
∞∑
k=0

P(X = k) =
∞∑
k=0

e−λ
λk

k!
= e−λ

∞∑
k=0

λk

k!
= 1.

So, indeed, Poisson(λ) is a probability distribution. It is also very easy to compute that

E(X) =
∞∑
k=0

kP(X = k) =
∞∑
k=0

k · e−λλ
k

k!
=
∞∑
k=1

e−λ
λk

(k − 1)!
= λ

∞∑
k=1

e−λ
λk−1

(k − 1)!

= λ

∞∑
`=0

e−λ
λ`

`!
= λ.

Theorem 9.6 (Poisson Approximation). Suppose Nn is a binomial(n, pn) random variable for
some pn. If n · pn → λ as n→∞, then for k ∈ N,

lim
n→∞

P(Nn = k) = e−λ
λk

k!
.

In other words: if p is small and n is large, then a binomial(n, p) random variable is approx-
imately Poisson(np). Since np is the expected value of binomial(n, p) and λ is the expected
value of Poisson(λ), this is the way it had to be.
Before we prove Theorem 9.6, let’s apply it to Example 9.4 to see how good an approxi-
mation we get.
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Example 9.7. If N5 is binomial(5, 1
4
), the Poisson approximation indicates the distribution

is close to Poisson(5
4
). Hence

P(N5 = 3) + P(N5 = 4) + P(N5 = 5) ≈ e−
5
4

(5
4
)3

3!
+ e−

5
4

(5
4
)4

4!
+ e−

5
4

(5
4
)5

5!
≈ 13.0%.

This isn’t a bad approximation, considering that 5 is not a very good approximation of
∞, nor is 1

4
a good approximation of 0. And the amount of arithmetic here is a lot less,

especially as n grows. For example, suppose the test had had 15 questions. In this case
n = 15 so pn = 15

4
. Hence, the Poisson approximation gives

P(8 ≤ N15 ≤ 15) ≈
15∑
k=8

e−
15
4

(15
4

)k

k!
≈ 3.8%.

On the other hand, if we calculate exactly from the distribution binomial(15, 1
4
), we get

P(8 ≤ N15 ≤ 15) =
15∑
k=8

(
15

k

)(
1

4

)k (
3

4

)15−k

≈ 1.7%.

Ratio-wise, this is still not a great approximation (although the absolute difference has
improved a little). The reason is that p has not shrunk; in fact, shrinking p has a much
stronger effect than increasing n.

Remark 9.8. Example 9.7 demonstrates an important feature of the Poisson approximation,
which is hard to prove but true: if n · pn increases to λ as n→∞, then

P(Nn = k) ≤ e−λ
λk

k!
.

That is: the Poisson approximation gives a (good) upper-bound. This was first proved
in 1968 in the Annals of Statistics. It is not easy to see from the following proof of the
Poisson approximation.
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10. LECTURE 10: OCTOBER 15, 2010

10.1. Proof of the Poisson Approximation. The Poisson approximation says that a binomial(n, p)
random variable can be approximated by a Poisson(np) random variable, provided n is
large and p is small. To make this precise, we restate the theorem here.

Theorem 10.1 (Poisson Approximation). For each n ∈ N, let pn be a number in (0, 1), such
that pn → 0 at the rate 1/n; i.e. suppose there is some constant λ > 0 such that n · pn → λ. If Nn

is a binomial(n, pn) random variable, then for k ∈ N,

lim
n→∞

P(Nn = k) = e−λ
λk

k!
.

Proof. Define λn = npn. Then we can write

P(Nn = k) =

(
n

k

)
pkn(1− pn)n−k =

n(n− 1) · · · (n− k + 1)

k!

(
λn
n

)k (
1− λn

n

)n−k
=
n(n− 1) · · · (n− k + 1)

nk
· λ

k
n

k!
·
(

1− λn
n

)n−k
=
n

n

n− 1

n
· · · n− k + 1

n
· λ

k
n

k!
·
(

1− λn
n

)n(
1− λn

n

)−k
.

For fixed k, each of the k factors at the front tends to 1. By assumption, λ
k
n

k!
→ λk

k!
. The last

term also tends to 1 because λn → λ so λn/n→ 0. Hence,

lim
n→∞

P(Nn = k) =
λk

k!
· lim
n→∞

(
1− λn

n

)n
.

We can use Calculus to simplify this limit. For example, taking the logarithm,

ln

(
1− λn

n

)n
= n ln(1− λn/n) = n(−λn/n+ o(1/n)) = −λn + o(1),

using Taylor’s theorem. Hence, the logarithm tends to− limn→∞ λn = −λ, and so the final
term tends to e−λ, completing the proof. �

Example 10.2. In the summer of 2001, there were 6 shark attacks in Florida, while the yearly
average is 2. Is this unusual?

Suppose that, on any given day, there is a probability p of a shark attack. The summer is
100 days long, and so the numberN of shark attacks during the summer is binomial(100, p).
Then E(N) = 100p, and since we know (empirically) that E(N) = 2, we get p = 1

50
is quite

small. Hence, we use the Poisson approximation. The odds that N ≤ 5 are approximately

P(N ≤ 5) =
5∑

k=0

P(N = k) ≈
5∑

k=0

e−2 2k

k!
≈ 98.3%.

(We can do the more laborious exact calculation instead; the result is ≈ 98.5%.) In other
words, the chances that there should be 6 shark attacks, knowing the long-term behaviour
of the sharks, is less than 2%. This is very unusual, and points to a change in the sharks’
behaviour.
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In an article in the September 7, 2001, National Post, Prof. David Kelton (then at U. Penn.,
now the Director of the Master of Science in Quantitative Analysis Program at the Uni-
versity of Cincinnati) stated (about the high number of shark attacks) “Just because you
see events happening in a rash this does not imply that there is some physical driver
causing them to happen. It is characteristic of random processes that they have bursty
behaviour.” This is very wrong. We are not talking about a single random event with
low probability, we are talking about an aggregate of events; as the above analysis shows,
without a change in the system, this should not happen with more than 98% certainty.
This only goes to show that you should not trust everything you read, even if it is quoted
from (so-called) experts. Experts make mistakes, and (more likely) are often misquoted
and misunderstood by the media.

10.2. Binomial Coefficients.
(
n
k

)
counts the number of ways of choosing one group of

size k out of a group of size n; we can equivalently think of this as dividing a group of
n into two parts: one of size k and the other of size n − k. Thinking in those terms, it
becomes obvious that (

n

k

)
=

(
n

n− k

)
,

which is also easy to check looking at the formula. Another neat property these coeffi-
cients have is the following Pascal relation.

Proposition 10.3. If 1 ≤ k < n, then(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Proof. This can be checked with some easy calculations from the formulas; but it is much
easier, and more informative, to prove this by understanding what it says. Take our group
of n, and select one of them (Bob). When we choose k people from the group, we have a
choice: either we include Bob or we don’t. If we decide to include Bob, we must choose
an additional k − 1 people from the remaining n − 1:

(
n−1
k−1

)
. On the other hand, if we

exclude Bob (poor Bob), we must choose all k folks out of the other n − 1 people:
(
n−1
k

)
.

Since we must either include or exclude Bob, these must add up to all the ways to choose
k out of n:

(
n
k

)
. �

If we line up the numbers
(
n
0

)
,
(
n
1

)
,
(
n
2

)
, . . . ,

(
n
n

)
in rows and stack these rows in a pyramid

as n increases, we have a triangular array of numbers called Pascal’s triangle. The relation
of Proposition 10.3 says that, in the triangle, the value of any number is equal to the sum
of the two numbers above it.

A famous theorem, originally proved by Newton, relates the combination numbers
(
n
k

)
with polynomials.

Theorem 10.4 (The Binomial Theorem). For any real x, y and natural n,

(x+ y)n =

(
n

0

)
xn +

(
n

1

)
xn−1y +

(
n

2

)
xn−2y2 + · · ·+

(
n

n− 1

)
xyn−1 +

(
n

n

)
yn

=
n∑
k=0

(
n

k

)
xkyn−k.
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Proof. It’s convenient to rename x = x1 and y = x0. If we expand out

(x0 + x1)n = (x0 + x1)(x0 + x1) · · · (x0 + x1),

forgetting for the moment that x0, x1 commute, we get 2n different terms, each of the form
xi1xi2 · · ·xin where i1, . . . , in are in {0, 1}. For example,

(x0 + x1)(x0 + x1)(x0 + x1) = x0x0x0 + x0x0x1 + x0x1x0 + x0x1x1

+ x1x0x0 + x1x0x1 + x1x1x0 + x1x1x1.

Of course, x0, x1 do commute, and two of these terms xi1xi2 · · ·xin and xj1xj2 · · ·xjn are
equal if and only if there are the same number of 1s and 0s in the i’s as in the j’s: i.e. if
i1 + · · ·+ in = j1 + · · ·+ jn. this sum can be anything from 0 to n; if i1 + · · ·+ in = k, then
each such term is equal to xk1x

n−k
0 = xkyn−k. The number of such terms can be counted:

we must choose k 1s out of the n slots, so there are
(
n
k

)
such terms. Hence

(x+ y)n =
n∑
k=0

∑
i1+···+in=k

xi1 · · ·xin =
n∑
k=0

xkyn−k
∑

i1+···+in=k

1 =
n∑
k=0

xkyn−k
(
n

k

)
.

�

Each of the terms xi1 · · ·xin = xkyn−k is called a monomial (a polynomial that is a product
of powers of the variables). A sum of two monomials is called a binomial. Hence this
is the binomial theorem. For this reason, the numbers

(
n
k

)
are usually called the binomial

coefficients.

An easy consequence of the binomial theorem is that we can add up all the binomial
coefficients of a given degree.

Corollary 10.5.
∑n

k=0

(
n
k

)
= 2n.

Proof. Just sub in x = y = 1 in the binomial theorem:

2n = (1 + 1)n =
n∑
k=0

(
n

k

)
1k1n−k =

n∑
k=0

(
n

k

)
.

�

Note:
(
n
k

)
counts the number of subsets of size k from a set of size n. Any subset must

have size k for some k ∈ {0, 1, 2, . . . , n}, and so the sum of the binomial coefficients counts
the number of subset of a set of size n. As claimed earlier, this is equal to 2n.

The more general numbers
(

n
n1 n2 ··· nm

)
count the number of ways of dividing a group

of n objects into m groups of sizes n1, n2, . . . , nm. These numbers are called multinomial
coefficients. They arise just like the binomial coefficients, when expanding powers of a
multinomial (a sum of, in this case, m monomials).

Theorem 10.6 (Multinomial Theorem). Let x1, x2, . . . , xm be real numbers, and let n be a
positive integer. Then

(x1 + x2 + · · ·+ xm)n =
∑

n1+···+nm=n

(
n

n1 n2 · · · nm

)
xn1

1 x
n2
2 · · ·xnmm .
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The proof of Theorem 10.6 is very similar to the proof of the binomial theorem, just more
notation-intensive.

As with the binomial distribution, multinomial coefficients come into play with comput-
ing the probabilities of the number of outcomes of a group of (more than two) events with
known probabilities in multiple trials.

Example 10.7. Suppose we perform an experiment in which there are m possible out-
comes ω1, . . . , ωm, with probabilities P(ωi) = pi. If we perform n independent trials of the
experiment, then the probability that outcome ω1 occurs exactly n1 times, ω2 occurs n2

times, and so on through ωm occurring nm times (so n = n1 + · · ·+ nm) is(
n

n1 n2 · · · nm

)
pn1

1 p
n2
2 · · · pnmm .

For example: suppose a die has A on 3 faces, B on 2 faces, and C on 1 face. Then in each
roll, P(A) = 3

6
= 1

2
, P(B) = 2

6
= 1

3
, and P(C) = 1

6
. If we roll the die 10 times, then

P(5 A, 3 B, 2 C) =

(
10

5 3 2

)(
1

2

)5(
1

3

)3(
1

6

)2

=
10!

5!3!2!
· 1

253362
=

35

432
≈ 8.1%.

10.3. Ball and Urn Problems. Many problems in probability have the following flavour.

Example 10.8. An urn contains 15 white balls and 10 red balls. If 6 are pulled out randomly,
what are the odds that 4 are white and 2 are red?

There are 25 balls in total, and so the number of ways of pulling 6 out is
(

25
6

)
= 177100.

We assume that the balls are selected independently, and each is chosen with probability
1
25

; the result is all 177100 combinations are equally likely. So, we must count the number
of them in which 4 are white and 2 are red. There are 15 red balls, so there are

(
15
4

)
= 1365

was of selecting four white balls; there are 10 red balls, so there are
(

10
2

)
= 45 ways of

selecting 2 red balls. Hence, there are 1365 · 45 = 61425 such combinations, and the odds
are

61425

177100
≈ 34.7%.

This might seem surprising: out of the 7 possible color configurations, this lone one hap-
pens more than 1

3
of the time. In fact, we can use similar computations to calculate the

probabilities of all possible configurations.

white/red 6/0 5/1 4/2 3/3 2/4 1/5 0/6
P 2.8% 17.0% 34.7% 30.8% 12.5% 2.1% 0.1%

As Example 10.8 demonstrates, if an urn contains n balls painted two colors, n1 of color
A and n2 = n − n1 of color B, the the probability of randomly selecting k balls with k1 of
color A and k2 = k − k1 of color B is

P(k1 A, k2 B) =

(
n1

k1

)(
n2

k2

)(
n
k

) =

(
n1

k1

)(
n−n1

k−k1

)(
n
k

) .
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Since the experiment involves pulling k balls out of the urn and they must be divided
in some manner between the two colors, this proves the following identity for binomial
coefficients:

k∑
k1=0

(
n1

k1

)(
n− n1

k − k1

)
=

(
n

k

)
.

Example 10.9. Most lotteries are ball and urn games. For example, Lotto 6/49 (popular
in Western Canada) is played as follows: 49 balls (labeled 1 through 49) are randomized,
and 6 of them are selected. People buy tickets with 6 distinct numbers on them; if all 6
numbers on the ticket match the numbers chosen from the urn, the ticket holder wins the
grand prize (valued in the millions of dollars). There are also smaller prizes for matching
at least 3 numbers.

There are
(

49
6

)
= 13, 983, 816 possible lotto draws. So, the probability of matching all 6

is, of course, 1 out of 13, 983, 816 (about 7 out of 100 million). But matching 3 numbers
is much more likely. Here, we have divided the balls into two groups: the 6 that were
chosen, and the remaining 43. So the probability of 6 randomly chosen numbers (those
on your ticket) having 3 matching (from the 6 winning) and 3 not matching (from the 43
others) is (

6
3

)(
43
3

)(
49
6

) ≈ 1.8%.

Similarly, we can calculate the probabilities of any number of balls matching: the proba-
bility of k ∈ {0, 1, 2, 3, 4, 5, 6}matching is(

6
k

)(
43

6−k

)(
49
6

) .

These numbers are approximated in the following chart.

k 0 1 2 3 4 5 6
P 43.6% 41.3% 13.2% 1.8% 0.1% 0.002% 0.000007%

Example 10.10. In a district election for local government in Queens, NY in 1968, Andrew
V. Ippolito received 1405 votes, while his opponent received 1422 (a margin of only 17
votes). After the election, it was noticed that 101 more votes were cast than the number of
registered voters in the district. Thus, 101 votes should be disqualified – though there is no
way to know which candidates those 101 voted for. A district court judge ordered a new
election, on the grounds that “it does not strain the probabilities to assume a likelihood
that the questioned votes produced or could produce a change in the result.”

We can view this as a ball and urn question. There were 1405+1422 = 2827 votes cast, 1405
for Ippolito, and 1422 for his opponent. Suppose we choose 101 of these votes randomly.
The probability that k are for Ippolito and 101− k are for his opponent is(

1405
k

)(
1422

101−k

)(
2827
101

) .
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If we throw these randomly selected 101 votes away, there are 2726 votes remaining, with
1405−k for Ippolito, and 1422− (101−k) = 1321 +k for his opponent. In order to reverse
the result of the election, it must be that 1405− k > 1321 + k, which means k < 42. Hence,
the probability that a randomly-selected 101 votes removed would reverse the election
results is

41∑
k=0

(
1405
k

)(
1422

101−k

)(
2827
101

) .

It would be no fun to sum this up by hand! But a computer program like Maple can
handle it with little trouble: it is ≈ 3.87%. It is, of course, a matter of opinion, but many
would say that this does “strain the probabilities” (since the disqualification would still
result in a win for the opponent with over 96% certainty).



45

11. LECTURE 11: OCTOBER 20, 2010

11.1. The Principle of Inclusion-Exclusion. We have already seen (and multiply-used)
the identity

P(A ∪B) = P(A) + P(B)− P(A ∩B).

What if we are interested in the probability of a triple union, P(A∪B∪C)? We can handle
this iteratively. Let D = A ∪B; then

P(A ∪B ∪ C) = P(D ∪ C) = P(D) + P(C)− P(D ∩ C).

Well, for P(D) we have

P(D) = P(A ∪B) = P(A) + P(B)− P(A ∩B).

Also, D ∩ C = (A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C), and so

P(D ∩ C) = P ((A ∩ C) ∪ (B ∩ C)) = P(A ∩ C) + P(B ∩ C)− P ((A ∩ C) ∩ (B ∩ C)) .

Finally, since (A ∩ C) ∩ (B ∩ C) = A ∩B ∩ C, putting all the pieces together we get

P(A ∪B ∪C) = P(A) + P(B)− P(A ∩B) + P(C)− [P(A ∩C) + P(B ∩C)− P(A ∩B ∩C)].

Simplifying and reordering, this is neatly expressed as

P(A ∪B ∪ C) = P(A) + P(B) + P(C)− P(A ∩B)− P(A ∩ C)− P(B ∩ C) + P(A ∩B ∩ C).

This is the triple union version of the principle of inclusion-exclusion.

Example 11.1. Three fair dice are rolled. What is the probability that at least one 6 comes up?

We could calculate this by looking at the complement: there are 53 = 125 outcomes with
no 6s out of the possible 216, hence the probability we are after is 1− 125

216
= 91

216
. Now, let’s

calculated it instead using inclusion-exclusion. Let Ai be the event that 6 comes up on the
ith roll. Then we are interested in P(A1 ∪ A2 ∪ A3), which we can calculate as

P(A1∪A2∪A3) = P(A1)+P(A2)+P(A3)−P(A1∩A2)−P(A1∩A3)−P(A2∩A3)+P(A1∩A2∩A3).

Because the dice are fair, P(A1) = P(A2) = P(A3) = 1
6
. Because the rolls are independent,

P(A1 ∩ A2) = P(A1 ∩ A3) = P(A2 ∩ A3) = 1
36

, and P(A1 ∩ A2 ∩ A3) = 1
216

. Hence,

P(A1 ∪ A2 ∪ A3) = 3 · 1

6
− 3 · 1

36
+

1

216
=

91

216
,

as expected.

One way to view the inclusion-exclusion formula is by successive approximations. If
A,B,C are all disjoint, then we know P(A∪B ∪C) = P(A) +P(B) +P(C); in general, this
sum counts intersecting pieces more than once, and so

P(A ∪B ∪ C) ≤ P(A) + P(B) + P(C).

We can try to account for the intersecting pieces, which are A∩B, A∩C, and B ∩C, each
of which is counted twice when adding up P(A) + P(B) + P(C); so we subtract them off.
But this overcompensates, since the common intersection A ∩B ∩ C then gets subtracted
out 3 times (when we only wanted to subtract it out 2 times). So we have

P(A ∪B ∪ C) ≥ P(A) + P(B) + P(C)− P(A ∩B)− P(A ∩ C)− P(B ∩ C).
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Finally, to recompensate again, we add back in P(A ∪ B ∪ C) and get equality. The two
inequalities we proved en route can be useful in themselves; they are called the Bonferroni
inequalities.

This compensating counting procedure allows us to get the general inclusion-exclusion
formula for any finite number of sets in a union.

Theorem 11.2 (The Inclusion-Exclusion Principle). Let A1, A2, . . . , An be events in a proba-
bility space (Ω,P). Then

P(A1 ∪ · · · ∪ An) =
∑

1≤i≤n

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) +
∑

1≤i<j<j≤n

P(Ai ∩ Aj ∩ Ak)

− · · ·+ (−1)n+1P(A1 ∩ · · · ∩ An).

Proof. We could prove this by induction, following the method we used to prove the n = 3
case above. Instead, let’s think about it in terms of compensating and overcounting. (The
argument here only really works in the discrete case.) For 0 ≤ k ≤ Ω, define Bk ⊆ Ω to be
the set of all outcomes ω that are in exactly k of the setsA1, A2, . . . , Ak. ThenA1∪· · ·∪An =
B1 ∪ · · · ∪Bn. But the Bk are disjoint. Thus

P(A1 ∪ · · · ∪ An) =
n∑
k=1

P(Bk) =
n∑
k=1

∑
ω∈Bk

P(ω).

Now, suppose ω ∈ Bk.

• The sum
∑

i P(Ai) counts P(ω) exactly
(
k
1

)
times.

• The sum
∑

i<j P(Ai ∩ Aj) counts P(ω) exactly
(
k
2

)
times.

...
• The sum

∑
i1<i2<···<ik P(Ai1 ∩ · · · ∩ Aik) counts P(ω) exactly

(
k
k

)
times.

For m < k, none of the terms in the sum
∑

i1<···<im P(Ai1 ∩ · · ·Aim) does not count P(ω) as
all. Thus, the inclusion-exclusion formula above counts P(ω)(

k

1

)
−
(
k

2

)
+

(
k

3

)
− · · ·+ (−1)k+1

(
k

k

)
times. Well, cleverly invoking the binomial theorem, we have

0 = (−1 + 1)k =
k∑
j=0

(
k

j

)
(−1)j(1)k−j =

(
k

0

)
−
(
k

1

)
+

(
k

2

)
− · · ·+ (−1)k

(
k

k

)
.

Subtracting the last k terms from both sides gives us(
k

1

)
−
(
k

2

)
+

(
k

3

)
− · · ·+ (−1)k+1

(
k

k

)
=

(
k

0

)
= 1.

Whence, the inclusion-exclusion formula counts the probability of each ω ∈ Bk exactly
once. Since the disjoint union of the Bk’s is the union A1 ∪ · · · ∪ An, this proves the
theorem. �

Example 11.3. A fair die is rolled 10 times. How likely is it that we don’t see each of the numbers
at least once?
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Let Ai be the event that we never see the number i. Since the probability of i in any given
roll is 1

6
, each of the events Ai have probability (5

6
)10. Now, if i 6= j, the event Ai ∩ Aj

is the event that the other four numbers (rather than i, j) appear in the 10 independent
trials, so P(Ai ∩ Aj) = (4

6
)10. In general, if i1 < i2 < · · · < ik with k ≤ 6, we have

P(Ai1 ∩ · · · ∩ Aik) = (6−k
6

)10. (In particular, when k = 6 we have P(A1 ∩ · · · ∩ A6) = 0, of
course, since this event is that no number ever comes up, which is impossible.)

The event that not all numbers show up is the event that at least one number never shows
up, i.e. A1 ∪ A2 ∪ · · · ∪ A6. Now, in the inclusion-exclusion formula, all the terms in the
sum ∑

1≤i1<···<ik≤6

P(Ai1 ∩ Aik)

are equal to (6−k
6

)10, and so this sum is equal to(
6

k

)(
6− k

6

)10

.

Hence, the inclusion-exclusion formula tells us that

P(A1 ∪ · · · ∪ A6) =

(
6

1

)(
5

6

)10

−
(

6

2

)(
4

6

)10

+

(
6

3

)(
3

6

)10

−
(

6

4

)(
2

6

)10

+

(
6

5

)(
1

6

)10

.

=
101923

139968
≈ 72.8%.

What if we’d rolled the dice more times? Changing 10 to 15 in the formula gives an
answer of about 35.6%. Much smaller. If we roll 20 times, the probability drops to about
15.2%. In general, it falls off exponentially as the number of rolls increases.

Example 11.4. A deck of n cards are shuffled well. You are asked to guess at what order they are
in. What is the probability you get at least one card right?

LetAi be the event that you get the ith card right. (Ai includes outcomes where more than
the ith card is correct.) We want to calculate P(A1∪· · ·∪An). To use inclusion-exclusion, we
need to calculate all probabilities of intersections P(Ai1∩· · ·∩Aik) for 1 ≤ i1 < · · · < ik ≤ n,
for all k ≤ n. Fortunately, these probabilities don’t depend in the particular indices but
only on the number of them (as in Example 11.3). The eventAi1∩· · ·∩Aik is the event that
cards i1, . . . , ik are correct, and the others may or may not be. There are n − k remaining
cards, and there are therefore (n − k)! possible orderings of them; since the cards were
well shuffled, all of these orderings are equally likely. There are n! possible orderings in
total, and hence

P(Ai1 ∩ · · ·Aik) =
(n− k)!

n!
.

Thus, the inclusion-exclusion formula gives us

P(A1 ∪ · · · ∪ An) =

(
n

1

)
(n− 1)!

n!
−
(
n

2

)
(n− 2)!

n!
+

(
n

3

)
(n− 3)!

n!
− · · ·+ (−1)n+1

(
n

n

)
0!

n!
.

In this sum, we have terms of the form

(−1)k+1

(
n

k

)
(n− k)!

n!
= (−1)k+1 n!

k!(n− k)!

(n− k)!

n!
=

(−1)k+1

k!
.
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That is

P(A1 ∪ · · · ∪ An) =
n∑
k=1

(−1)k+1

k!
.

We could calculate this exactly for different n; for example, when n = 52 we get approxi-
mately 0.63212. It is much easier, however, to notice that

1− P(A1 ∪ · · · ∪ An) = 1 +
n∑
k=1

(−1)k

k!
=

n∑
k=0

(−1)k

k!
.

This is the nth Taylor-series approximation for the series e−1 =
∑∞

k=0
(−1)k

k!
. Hence, for

large n,
P(A1 ∪ · · · ∪ An) ≈ 1− e−1.

In fact, with n = 52, this agrees with the exact answer to 69 decimal places.

Of particular interest is the following consequence: no matter how many cards there are,
there is still a roughly 36.8% chance you will get none right!
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12. LECTURE 12: OCTOBER 22, 2010

12.1. Estimates Using Inclusion-Exclusion. Thinking back to the n = 3 case in the proof
of the inclusion-exclusion formula, if we cut off the sum at some point, we get either an
upper or a lower bound for the actual value.

Theorem 12.1 (Bonferroni’s Inequalities). Let 1 ≤ m ≤ n, and define

Pm ≡
m∑
j=1

(−1)j+1
∑

1≤i1<···<ij≤n

P(Ai1 ∩ · · · ∩ Aij).

(The principle of inclusion-exclusion, Theorem 11.2, states that Pn = P(A1 ∪ · · · ∪An).) Then for
1 ≤ ` < n/2,

P2` ≤ P(A1 ∪ · · · ∪ An) ≤ P2`−1.

In other words, if you cut off the sum in inclusion-exclusion, you get an upper-bound if the sum
ends in a +, or a lower bound if the sum ends in a −. In particular,

n∑
i=1

P(Ai)−
∑

1≤i<j≤n

P(Ai ∩ Aj) ≤ P(A1 ∪ · · · ∪ An) ≤
n∑
i=1

P(Aj).

Proof. We approach this just as in the proof of Theorem 11.2. LetBk be the set of outcomes
ω that are in exactly k of the events A1, . . . , An for 1 ≤ k ≤ n. Then, following exactly the
proof of Theorem 11.2, the sum Pm counts the element P(ω)(

k

1

)
−
(
k

2

)
+

(
k

3

)
− · · ·+ (−1)m+1

(
k

m

)
=

m∑
j=1

(−1)j+1

(
k

j

)
times, provided m ≤ k. (If k < m then Pm counts P(ω) as many times as does Pn since ω
is not in any of the higher intersections; as we showed in the proof of Theorem 11.2, P(ω)
is counted exactly once in this case. We can dispense with this discussion by defining(
k
m

)
= 0 when m > k.) We want to see how different this is from the 1 time we want it to

be counted, so we look at Pm − 1, which counts P(ω)

−1 +
m∑
j=1

(−1)j+1

(
k

j

)
=

m∑
j=0

(−1)j+1

(
k

j

)
times. We want to compare the sign of this with the sign of the final term in the sum Pm,
which is (−1)m+1. So it makes sense to divide by this sign: (−1)−m−1(Pm − 1) counts P(ω)
exactly

(−1)−m−1

m∑
k=0

(−1)j+1

(
k

j

)
=

m∑
j=0

(−1)m−j
(
k

j

)
times. Remarkably, this sum can be explicitly calculated. Recall the relation from Pascal’s
triangle:

(
k
j

)
=
(
k−1
j

)
+
(
k−1
j−1

)
. Thus

m∑
j=0

(−1)m−j
(
k

j

)
=

m∑
j=0

(−1)m−j
[(
k − 1

j

)
+

(
k − 1

j − 1

)]
.
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This is actually a telescoping sum. Let’s write out a few terms to see this, starting at the
top j = m:[(

k − 1

m

)
+

(
k − 1

m− 1

)]
−
[(

k − 1

m− 1

)
+

(
k − 1

m− 2

)]
+

[(
k − 1

m− 2

)
+

(
k − 1

m− 3

)]
− · · ·

· · ·+ (−1)m−1

[(
k − 1

1

)
+

(
k − 1

0

)]
+ (−1)m

[(
k − 1

0

)]
.

(The last term is just
(
k
0

)
=
(
k−1

0

)
; Pascal’s triangle cuts off at the edges. Again we could

dispense with this by making the convention
(
k
j

)
= 0 when j < 0.) All of the terms cancel

in pairs except for the very first, and so we have the remarkable formula
m∑
j=0

(−1)m−j
(
k

j

)
=

(
k − 1

m

)
. (12.1)

Thus, (−1)−m−1(Pm − 1) counts P(ω)
(
k−1
m

)
times, which always non-negative. So Pm − 1

counts P(ω) (−1)m
(
k−1
m

)
times, which is positive when Pm ends in a + and negative when

Pm ends in a −,regardless of the value of k (between 1 and n). This therefore holds true
for any ω ∈ A1 ∪ · · · ∪An: P(ω) is counted at least 1 time of Pm ends in a +, and is counted
at most 1 time if Pm ends in a −. This proves the theorem. �

Remark 12.2. One might hope that taking more terms in inclusion-exclusion will decrease
the error in Bonferroni’s inequalities; i.e. one might hope that |Pm − P(A1 ∪ · · · ∪ An)|
decreases as m increases. Unfortunately, this is typically not true. For example, consider
the case A1 = A2 = · · · = An. Then the union is equal to A1, and so every point in the
union is in the intersection of n of the sets; hence, the above analysis shows that for any
point ω ∈ A1, P(ω) is counted

(
n−1
m

)
times by (−1)−m−1(Pm− 1). In other words, each P(ω)

is counted 1 + (−1)m+1
(
n−1
m

)
times by Pm, and so Pm = (1 + (−1)m+1

(
n−1
m

)
)P(A1). Since

P(A1) = P(A1 ∪ · · · ∪ An), we see that in this case

|Pm − P(A1 ∪ · · · ∪ An)| =
(
n− 1

m

)
P(A1).

Asm grows, this grows for a while, maxing out near n−1
2

, then decreasing down to 0 when
m = n.

Example 12.3. Let’s use Bonferroni’s inequalities to estimate the probability of three peo-
ple sharing the same birthday in a crowd of n (random, independent) people. There are(
n
3

)
possible groups of 3 in the crowd; for each such group g let Ag be the event that the

three have the same birthday. Then P(Ag) = 1
3652 for any group g (pick one of the three;

the other two must each have the same birthday is the one chosen). Now, we want to
calculate

P

(⋃
g

Ag

)
.

To get an upper-bound, Bonferroni’s first inequality yields

P

(⋃
g

Ag

)
≤
∑
g

P(Ag) =

(
n

3

)
1

3652
.
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For example, when n = 60, this gives 25.7%; when n = 80, we get 61.7%; and when
n = 100, we get 121.4% – this last one is a pretty bad estimate! Now for the lower bound,

P

(⋃
g

Ag

)
≥
∑
g

P(Ag)−
∑
g<g′

P(Ag ∩ Ag′).

(Here g < g′ means we are counting over pairs (g, g′) where g 6= g′, but we don’t count
both (g, g′) and (g′, g), only one of them.) For distinct groups g, g′, the probability of the
event Ag ∩ Ag′ depends on the intersection of g, g′. Since g 6= g′, the two groups of 3 can
overlap by 0, 1, or 2 people. So we have (using the upper-bound calculation above)

P(
⋃
g

Ag) ≥
(
n

3

)
1

3652
−

∑
|g∩g′|=0

P(Ag ∩ Ag′)−
∑
|g∩g′|=1

P(Ag ∩ Ag′)−
∑
|g∩g′|=2

P(Ag ∩ Ag′).

If the two groups g, g′ do not intersect (|g ∩ g′| = 0), then the event Ag ∩ A′g simply means
the first three share a birthday, and the second three share a birthday; the probability of
this is ( 1

3652 )2. (In other words: if g and g′ do not intersect, then the events Ag and Ag′
are independent.) The number of such disjoint pairs of 3-person groups is counted by a
multinomial coefficient: we must divide the n people into two groups of 3 along with the
remaining group of n− 6. Thus∑

|g∩g′|=0

P(Ag ∩ Ag′) =

(
n

3 3 n− 6

)
1

3654
.

Now, consider those pairs of groups g, g′ that have one common member, |g ∩ g′| = 1.
In this case, the event Ag ∩ Ag′ , that everyone in the first group has the same birthday
and everyone in the second group has the same birthday, forces the 5 people to share the
same birthday, so P(Ag ∩ Ag′) = 1

3654 . Choosing such groups is equivalent to dividing the
n people into groups of size 1, 2, 2, n − 5 (the intersection, the two others in each of the
groups, and everyone else). Thus∑

|g∩g′|=1

P(Ag ∩ Ag′) =

(
n

1 2 2 n− 5

)
1

3654
.

For the final terms, consider pairs of groups g, g′with an overlap of two people, |g∩g′| = 2.
Again, the event Ag ∩ Ag′ in this case forces all people in the two groups to share one
birthday; there are 4 people in the two groups, so P(Ag ∩ Ag′) = 1

3653 . Choosing two
such groups is equivalent to dividing the n people into groups of sizes 2, 1, 1, n − 4 (the
intersection, the one other for each group, and everyone else). Thus,∑

|g∩g′|=2

P(Ag ∩ Ag′) =

(
n

2 1 1 n− 4

)
1

3653
.

So, finally, the second Bonferroni inequality gives us the lower bound(
n

3

)
1

3652
−
(

n

3 3 n− 6

)
1

3654
−
(

n

1 2 2 n− 5

)
1

3654
−
(

n

2 1 1 n− 4

)
1

3653

for the probability that at least one group of three people in n share a common birthday.
Evaluating at n = 60 yields 7.1%; with n = 80 we get −15.3%; with n = 100, we get
−122.4%.
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So, the Bonferroni inequalities give us no information quickly as n grows. We do, how-
ever, have the information that

7.1% ≤ P(3 people among 60 share a birthday) ≤ 25.7%.

As you can see, the birthday problem (with more than two people) is quite hard!

12.2. Conditional Probability. Recall the definition of conditional probability: ifA,B are
two events in a probability space (Ω,P) and P(B) > 0, then the probability of A given that
B occurs is

P(A|B) =
P(A ∩B)

P(B)
.

As motivation, think again in terms of the frequency-interpretation of probability: if we
perform many many trials,

P(A) ≈ # trials where A occurs
# trials

.

Now, if we want to observe the frequency of A given that B occurs, we look through all
of our data, single out those trials where B occurs, and look at how many among them
where A also occurs; thus

P(A|B) ≈ # trials where B occurs, and A also occurs
# trials where B occurs

.

Dividing top and bottom by the number of trials yields

P(A|B) ≈ # trials where B occurs, and A also occurs
# trials where B occurs

=
(# trials where B occurs, and A also occurs)/(# trials)

(# trials where B occurs)/(# trials)

≈ P(A ∩B)

P(B)
.

Returning to mathematics, notice the following properties that P(A|B) has.

• P(Ω|B) = P(Ω∩B)
P(B)

= P(B)
P(B)

= 1. Thus, P( · |B) assigns mass 1 to the whole sample
space.

• If A1, A2 are disjoint, then

P(A1 ∪ A2|B) =
P((A1 ∪ A2) ∩B)

P(B)
=

P([A1 ∩B] ∪ [A2 ∩B])

P(B)
.

Then A1 ∩ B and A2 ∩ B are also disjoint, and so since P is additive over disjoint
unions,

P(A1 ∪ A2|B) =
P(A1 ∩B) + P(A2 ∩B)

P(B)
=

P(A1 ∩B)

P(B)
+

P(A2 ∩B)

P(B)
= P(A1|B) + P(A2|B).

In other words, P( · |B) is additive over disjoint unions.
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• Suppose An ↑ A (see Lecture 1: this means A1 ⊆ A2 ⊆ · · · and A =
⋃∞
n=1 An). Then

A1 ∩ B ⊆ A2 ∩ B ⊆ · · · and
⋃∞
n=1 An ∩ B = A ∩ B, so An ∩ B ↑ A ∩ B, and by the

continuity of P we get

P(An|B) =
P(An ∩B)

P(B)
→ P(A ∩B)

P(B)
= P(A|B)

as n→∞. In other words, P( · |B) is continuous.
What these items show is that the conditional probability P( · |B) is, itself, a probability measure
on Ω. And actually, it is often easier to start with this probability (i.e. we often have more
intuition about it in a given experiment), to work out its constituents P(A) and P(A ∩ B)
indirectly.

Example 12.4. Two cards are taken from a well-shuffled deck of 52 cards. What is the probability
they are both clubs?

Let Ci be the event that the ith card is a club, i = 1, 2. We are interested in calculating
P(C1 ∩ C2). Well, P(C2|C1) = P(C1 ∩ C2)/P(C1). The denominator is easy: picking one
cards out of 52, the chance that it is a club is 13/52, so P(C1) = 1

4
. Now, in the event that

we chose a club (i.e. conditioning on C1), there are 51 cards remaining, and 12 of them are
clubs. Hence, P(C2|C1) = 12

51
. So, we have the equation

12

51
=

P(C1 ∩ C2)
13
52

,

and so P(C1 ∩ C2) = 13
52
· 12

51
.

The method demonstrated in Example 12.4 is so ubiquitous, we give it a name: the mul-
tiplication rule. It is a trivial consequence of the definition, but it is very useful in this
form:

P(A ∩B) = P(A)P(A|B).

In fact, we can continue this way: if we have 3 events A1, A2, A3, then

P(A1 ∩ A2 ∩ A3) = P(A1) · P(A1 ∩ A2)

P(A1)
· P(A1 ∩ A2 ∩ A3)

P(A1 ∩ A2)
.

The second term is P(A2|A1). If we write the numerator of the third term as P((A1 ∩A2)∩
A3), we recognize this as P(A3|A1 ∩ A2), and so the multiplication rule says

P(A1 ∩ A2 ∩ A3) = P(A1)P(A2|A1)P(A3|A1 ∩ A2).

In general, we have

P(A1 ∩ · · · ∩ An) = P(A1)P(A2|A1)P(A3|A1 ∩ A2) · · ·P(An|A1 ∩ · · · ∩ An−1).

Example 12.5. Five cards are dealt from a well-shuffled deck of 52 cards. What is the probability
they form a flush (i.e. all cards of the same suit)?

For n = 1, 2, 3, 4, 5 let Fn be the event that the nth card is the same suit as the n−1st card (so
F1 is just the event that we get a card, i.e. F1 = Ω). A flush is the event F1∩F2∩F3∩F4∩F5.
We calculate this as

P(F1)P(F2|F1)P(F3|F1 ∩ F2)P(F4|F1 ∩ F2 ∩ F3)P(F5|F1 ∩ F2 ∩ F3 ∩ F4).
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By definition, P(F1) = 1. Now, once F1 occurs, there are only 12 cards left in its suit, out
of 51 total, so P(F2|F1) = 12

51
. Once F1 and F2 occur, there are only 11 cards left of that suit,

among 50 total, so P(F3|F1 ∩ F2) = 11
50

. Continuing this way, we have

P(F1 ∩ · · · ∩ F5) = 1 · 12

51
· 11

50
· 10

49
· 9

48
≈ 0.198%.
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13. LECTURE 13: OCTOBER 25, 2010

13.1. Law of Total Probability. There are many cases in which conditional probabili-
ties are easier to determine than probabilities of intersections directly. This can help
us calculate probabilities using the following general setup. Let A be an event, and let
B1, B2, . . . , Bn be a collection of disjoint events whose union is all of Ω. (In other words,
in any outcome, exactly one of the Bi occurs.) Such a collection is called a partition. Then

A = A ∩ Ω = A ∩ (B1 ∪ · · · ∪Bn) = (A ∩B1) ∪ · · · ∪ (A ∩Bn),

and the union is disjoint. Hence

P(A) =
n∑
k=1

P(A ∩Bk).

Now, we use the multiplication rule, P(A ∩ Bk) = P(A|Bk)P(Bk), and thus we have the
law of total probability:

P(A) =
n∑
k=1

P(Bk)P(A|Bk).

Example 13.1. An urn contains 5 red and 10 black balls. 2 balls are drawn from the urn, without
replacement. What is the probability that the second ball drawn is red?

Let Ri be the event that the ith draw is red, and Bi the event that the ith draw is black.
We want to calculate P(R2). To do so, we notice that {B1, R1} is a partition, so the law of
total probability gives us

P(R2) = P(R1)P(R2|R1) + P(B1)P(R2|B1).

There are 15 balls in total, so the first ball is red with probability 5
15

= 1
3

and black with
probability 10

15
= 2

3
; so

P(R2) =
1

3
P(R2|R1) +

2

3
P(R2|B1).

Now, if the first ball is red, there are only 4 red balls left out of the 14, so P(R2|R1) = 4
14

= 2
7
.

On the other hand, if a blue ball is chosen first, then all 5 red balls remain out of the 14, so
P(R2|B1) = 5

14
. In total,

P(R2) =
1

3
· 2

7
+

2

3
· 5

14
=

2

21
+

10

42
=

1

3
.

Many examples in conditional probability can be phrased in the form of a two-stage ex-
periment: one trial is carried out, and the results of that trial determine how to proceed
with the second trial. (Example 13.1 can be thought of in those terms, except that there
the second trial is conducted the same way no matter what happened in the first trial.)

Example 13.2. A fair die is rolled; then a fair coin is tossed the number of times that came up on
the die. What is the probability of exactly 3 heads?

LetDk be the event that the die comes up k ∈ {1, 2, 3, 4, 5, 6}. Then theDk form a partition.
In this case, P(Dk) = 1

6
for all k. Setting A to be the event that we get exactly 3 heads, the
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law of total probability says that

P(A) =
6∑

k=1

P(Dk)P(A|Dk) =
1

6

6∑
k=1

P(A|Dk).

Now, if D1 or D2 occur, then A is impossible, so P(A|D1) = P(A|D2) = 0. For k ≥ 3, the
occurrence of Dk means that we can flip the coin k ≥ 3 times, and so the number of heads
is a binomial(k, 1

2
) random variable, so P(A|Dk) =

(
k
3

)
(1

2
)k. Thus

P(A) =
1

6

6∑
k=3

(
k

3

)(
1

2

)k
=

1

6

((
3

3

)
2−3 +

(
4

3

)
2−4 +

(
5

3

)
2−5 +

(
6

3

)
2−6

)
=

1

6

(
1

8
+ 4 · 1

16
+ 10 · 1

32
+ 20 · 1

64

)
=

1

6
· 8 + 16 + 20 + 20

64
=

1

6
.

Example 13.3 (The Monty Hall Problem). On the television program Let’s Make a Deal
(1963–1976), the host Monty Hall would often put contestants in the following situation. Three
doors are presented to you; you are told that two of them hide goats, while the third hides a valuable
prize. You must choose a door at random, to be opened revealing your haul. After you choose,
Monty opens one of the other two doors, always revealing a goat. You are then given a choice: stay
with the door you selected, or switch to the remaining door. Should you switch?

Our näive intuition would tell us that it doesn’t matter whether we switch: there are two
doors, one contains a prize, so the probability is 1

2
that we get the prize, and 1

2
that we get

the goat. But this is wrong. Let’s see why.

Number the doors 1, 2, 3 with #1 being the door you initially chose. Let Di be the event
that the prize is behind door i ∈ {1, 2, 3}. Let Mj be the event that Monty opens door
j ∈ {1, 2, 3}. Then the nine events {Di ∩Mj}1≤i,j≤3 form a partition. But five of these sets
are actually empty, as the following table shows.

Door #1 Door #2 Door #3 Monty’s action
D1 prize goat goat opens door #2 or #3
D2 goat prize goat opens door #3
D3 goat goat prize opens door #2

Hence, only the events D1 ∩M2, D1 ∩M3, D2 ∩M3, and D3 ∩M2 are nonempty, and these
form a partition. Now, let W be the event that you win the prize without switching. Then

P(W ) = P(D1 ∩M2)P(W |D1 ∩M2) + P(D1 ∩M3)P(W |D1 ∩M3)

+ P(D2 ∩M3)P(W |D2 ∩M3) + P(D3 ∩M2)P(W |D2 ∩M2).

ButW only occurs (without switching) ifD1 occurs, so P(W |D1∩M2) = P(W |D1∩M3) = 1,
while P(W |D2 ∩M3) = P(W |D3 ∩M2) = 0. Thus

P(W ) = P(D1 ∩M2) + P(D1 ∩M3).
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We can now calculate these probabilities from the multiplication rule, since Monty selects
either door 2 or door 3 randomly (with probability 1

2
either way).

P(D1 ∩M2) = P(D1)P(M2|D1) =
1

3
· 1

2
=

1

6

P(D1 ∩M3) = P(D1)P(M3|D1) =
1

3
· 1

2
=

1

6

Hence, without switching, we have P(W ) = 1
6

+ 1
6

= 1
3
. Thus, we should switch: we will

win with probability 2
3

in that case!

The faulty reasoning that might lead to the answer 1
2

for the probability of winning with
or without switching arises from the (false) believe that the four events forming the above
partition are equally likely. This is definitely not true: in fair two-stage experiments (where
later outcomes are determined by earlier ones), total probabilities are rarely uniform.

Remark 13.4. This problem was popularized by Marilyn vos Savant (who is in the Guiness
Book of World Records for having the highest IQ on record: 228), in her column in Parade
magazine in 1990. (This is a column where she solves challenging puzzles sent in by read-
ers.) It was first posed as a mathematical problem in a letter to the American Statistician in
1975. In 1991, Monty Hall was interviewed in the New York Times, where he explained
that the analysis didn’t apply to the actual game, since he relied on his perceptions of the
psychology of the contestant to subtly influence their decisions.

13.2. Bayes’ Theorem. Consider the following illuminating example.

Example 13.5. Suppose that an HIV test has 99% accuracy: if a patient is HIV+ then the test
gives a positive result (denoted T+) with probability 0.99, and gives a negative result (T−) with
probability 0.01. Similarly, if a patient is HIV−, the event T+ has probability 0.01, while the
event T− has probability 0.99. In other words,

P(T + |HIV+) = P(T − |HIV−) = 0.99 P(T + |HIV−) = P(T − |HIV+) = 0.01.

If a random patient tests positive, what is the probability s/he is HIV+?

The näive answer is 99%, but this is incorrect. What we want to know is P(HIV + |T+).
Thinking this must also be 0.99 is known as the prosecutor’s fallacy: the incorrect assump-
tion that P(A|B) = P(B|A) for different events A,B.

To see how false this assumption may be, consider the San Diego Metro area, with close
to 3 million residents; the HIV+ population is estimated at around 500. Now, if every
single San Diego resident got tested, here are the results we would expect:

• Of the 500 HIV+ people, 0.99 · 500 = 495 get T+, while 0.01 · 500 = 5 get T−.
• Of the 2, 999, 500 HIV− people, 0.01 · 2, 999, 500 = 29, 995 get T+, while

0.99 · 2, 999, 500 = 2, 969, 505 get T−.
So, looking at those people who test T+, we see that 495 of them are HIV+ while 29, 995
are HIV−. There are a total of 495 + 29, 995 = 30, 490 positive tests, and so the fraction of
those that are actually positive is 495

30490
≈ 1.6%. In other words,

P(HIV + |T+) ≈ 1.62%, even though P(T + |HIV+) = 99%.
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Remark 13.6. There is nothing medical or statistical that forces the symmetry in Example
13.5. It is more typical to find a situation like P(T + |HIV+) = 0.95 while P(T−|HIV−) =
0.85. This will be clear in Example 13.8.

As Example 13.5 demonstrates, P (A|B) and P (B|A) may bear little resemblance to each
other. We can see this just from their definitions:

P(A|B) =
P(A ∩B)

P(B)
, P(B|A) =

P(A ∩B)

P(A)
.

So their ratio is
P(B|A)

P(A|B)
=

P(A ∩B)/P(A)

P(A ∩B)/P(B)
=

P(B)

P(A)
,

i.e.

P(B|A) =
P(B) · P(A|B)

P(A)
. (13.1)

We saw this in Example 13.5:

P(HIV + |T+) =
P(HIV+)

P(T+)
P(T + |HIV+),

and since P(HIV+)/P(T+) is very small (in the example it’s 500
30490

), the two quantities
P(HIV + |T+) and P(T + |HIV+) are dramatically different.

Equation 13.1 is only useful if we have some way of knowing (or estimating) the ratio
P(B)/P(A). We can use the law of total probability to help with this: we can express
P(A) = P(A∩B)+P(A∩Bc) = P(B)P(A|B)+P(Bc)P(A|Bc). Thus, Equation 13.1 becomes

P(B|A) =
P(B)P(A|B)

P(B)P(A|B) + P(Bc)P(A|Bc)
. (13.2)

This is sometimes called Bayes’ Formula or Bayes’ Theorem. You should not memorize it.
Rather, you should remember the reasoning process that got us to it, and follow your nose
with given examples.

Example 13.7. Approximately 1% of American women over the age of 50 have breast cancer. A
woman with breast cancer is 90% likely to test positive, while a woman who does not have breast
cancer is 10% likely to get a false-positive. What is the probability that a woman has breast cancer,
given that she gets a positive test?

Let B be the event “she has breast cancer” and let T be the event “she tests positive”. The
information we have is that P(B) = 0.01, while P(T |B) = 0.9 and P(T |Bc) = 0.1. We want
to calculate P(B|T ) (the probability of breast cancer, given a positive test). We could use
Bayes’ formula, but instead let’s basically derive it from the definitions.

P(B|T ) =
P(B ∩ T )

P(T )
=

P(B ∩ T )

P(B ∩ T ) + P(Bc ∩ T )
.



59

Using the multiplication rule, the numerator is P(B ∩ T ) = P(T |B)P(B) = (0.9)(0.01) =
0.009. In the denominator, the first term we just calculated, and the second is P(Bc ∩ T ) =
P(T |Bc)P(Bc) = (0.1)(1− 0.01) = 0.099. Thus

P(B|T ) =
0.009

0.009 + 0.099
≈ 8.33%.

Example 13.8. In an election between two candidates Anderson and Bradley, exit polls indicated
that candidate Anderson was winning 60% to 40%. But when all the votes were counted, candidate
Bradley won by 55% to 45%. How could this have happened?

Suppose that, among those people who voted for Anderson, only the fraction p stopped
to answer the exit poll, while for those who voted for Bradley, the fraction q stopped to
answer the poll. There is no reason to suppose p = q. So let’s let A denote the event
“voted for Anderson”; assuming no other candidates (and no spoiled ballots) then Ac is
the event “voted for Bradley”. Let P be the event “stopped to answer the exit pollster”; so
P(P |A) = p while P(P |Ac) = q. Then tallying up the exit polls means calculating P(A|P )
and P(Ac|P ) (out of the sample of those who answered the pollster, what fraction voted
for Anderson vs. Bradley). Of coursr P(A|P ) = 1 − P(Ac|P ) since P( · |P ) is a probability.
Approaching this using Baye’s theorem, we have

P(A|P ) =
P(A ∩ P )

P(P )
=

P(A ∩ P )

P(A ∩ P ) + P(Ac ∩ P )
.

Using the multiplication formula, the numerator is P(A ∩ P ) = P(P |A)P(A) and the de-
nominator is P(A ∩ P ) + P(Ac ∩ P ) = P(P |A)P(A) + P(P |Ac)P(Ac); so

P(A|P ) =
P(P |A)P(A)

P(P |A)P(A) + P(P |Ac)P(Ac)
.

The final election results say that P(A) = 0.45 while P(Ac) = 0.55. On the other hand, the
exit polls indicated that P(A|P ) = 0.6. Thus, with P(P |A) = p and P(P |Ac) = q, we want
to find p, q such that

0.6 =
0.45p

0.45p+ 0.55q
.

There are many solutions to this; we can only solve for a ratio of p to q; indeed, it says

(0.6)(0.45)p+ (0.6)(0.55)q = (0.45)p

which implies
p

q
=

(0.6)(0.55)

(0.4)(0.45)
=

11

6
.

One solution is q = 0.3 and p = 0.55. In other words, if only 30% of those who voted for
Bradley answered the exit poll, while 55% of those who voted for Anderson answered the
poll, the surprising election results would have ensued.

Another reason not to memorize Bayes’ theorem is that the technique applies more widely
than the formula (as stated).
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Example 13.9. A tech company purchases chip-sets from three factories, F1, F2, F3; they get 20%
from F1, 30% from F2, and 50% from F3. The three factories have defect rates of 4%, 3%, and 2%
respectively. If a defective chip is found, what is the probability it came from factory F2?

For any chip, the probability it came from factory Fi is P(F1) = 0.2, P(F2) = 0.3, P(F3) =
0.5. Let D denote the event that a chip is defective. The probability a chip is defective,
given it comes from factory Fi, is P(D|F1) = 0.04, P(D|F2) = 0.03, P(D|F3) = 0.02. We are
interested in the probability that the chip came from factory F2 given that it’s defective:
P(F2|D). We proceed with Bayes’ approach, using the fact that F1, F2, F3 form a partition
(each chip-sets comes from one of the three factories).

P(F2|D) =
P(F2 ∩D)

P(D)
=

P(F2 ∩D)

P(F1 ∩D) + P(F2 ∩D) + P(F3 ∩D)
.

By the multiplication rule, P(Fi ∩ D) = P(D|Fi)P(Fi). We can calculated these from the
data given:

P(F1 ∩D) = P(D|F1)P(F1) = (0.04)(0.2) = 0.008

P(F2 ∩D) = P(D|F2)P(F2) = (0.03)(0.3) = 0.009

P(F3 ∩D) = P(D|F3)P(F3) = (0.02)(0.5) = 0.010

The sum of these three (the denominator in the calculation of P(Fi|D)) is 0.008 + 0.009 +
0.010 = 0.027, so

P(F2|D) =
0.009

0.027
=

1

3
.

We can similarly calculate that P(F1|D) = 8
27

while P(F3|D) = 10
27

. Notice that the condi-
tional defect rates are in the reverse order from the unconditioned defect rates of the three
factories (due to the unequal proportions of chip-sets purchased from each).

Example 13.9 demonstrates a slightly more general form of Bayes’ formula which we can
state as follows. Let A,B1, B2, . . . , Bn be events, where B1, . . . , Bn form a partition of the
sample space. Then for j ∈ {1, . . . , n},

P(Bj|A) =
P(Bj)P(A|Bj)∑n
i=1 P(Bi)P(A|Bi)

.

Again, I stress that you should not memorize this (since it will be difficult to remember
which symbol matches which event in a given example); rather, you should work from
the basics as we did in Examples 13.7–13.9 using the definition of conditional probability,
partitioning the sample space, and using the multiplication formula, to relate P(B|A) with
P(A|B).
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14. LECTURE 14: OCTOBER 27, 2010

14.1. Joint Distributions. Recall that, if X : Ω→ S is a random variable with state space
S, the distribution µX of X is a probability measure on S, given by

µX(x) = P(X = x) = P ({ω ∈ Ω : X(ω) = x}) , x ∈ S.

Frequently we will measure more than one random variable simultaneously; they may
not be independent. In general, if X : Ω → S and Y : Ω → T are random variables (on
the same sample space) with state spaces S, T , their joint distribution is the probability
measure µX,Y on S × T given by

µX,Y (x, y) = P(X = x, Y = y) = P ({ω ∈ Ω : X(ω) = x} ∩ {ω ∈ Ω : Y (ω) = y}) ,

for x ∈ S and y ∈ T .

Example 14.1. In a (mythical) community, 15% of families have no children, 20% have
one child, 35% have two children, and 30% have three children. Let B be the number of
boys, and G the number of girls each family has. (We suppose that each child born has
probability 1

2
of being a boy, and that genders of successive births are independent.) Then

we can calculate the distribution µB,G as follows. Here are a few examples.

• P(B = 0, G = 0) = P(no children) = 0.15.
• P(B = 0, G = 1) = P(1 chid, and G = 1) = P(1 chid)P(G = 1|1 chid) = (0.20)1

2
=

0.10.
• P(B = 1, G = 2) = P(3 children, and B = 1) = P(3 children)P(B = 1|3 children) =

(0.30)
(

3
1

)
1
2
(1

2
)2 = 0.1125.

Proceeding in this way, we can build up a table of all the values µB,G(x, y) where x, y
range through {0, 1, 2, 3}.

µB,G(i, j) i = 0 i = 1 i = 2 i = 3 row sum
j = 0 0.15 0.10 0.0875 0.0375 0.3750
j = 1 0.10 0.175 0.1125 0 0.3875
j = 2 0.0875 0.1125 0 0 0.2000
j = 3 0.0375 0 0 0 0.0375
col sum 0.3750 0.3875 0.2000 0.0375 1.0000

The lower-right portion of the table has all 0s, since the sum B +G is always ≤ 3.

Example 14.2. Suppose X, Y are independent (discrete) random variables. Then, by defi-
nition,

µX,Y (x, y) = P(X = x, Y = y) = P(X = x)P(Y = y) = µX(x)µY (y). (14.1)

This is another way to state independence: X, Y are independent if their joint distribution
µX,Y is the product of their individual distributions µX , µY , as in Equation 14.1.

In Example 14.1, we listed the column and row sums. Why? These numbers allow us
to recover the distributions of the two random variables separately.
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Proposition 14.3. If X, Y are two discrete random variables, then for any x0 in the state space of
X and any y0 in the state space of Y ,

µX(x0) = P(X = x0) =
∑
y

P(X = x0, Y = y) =
∑
y

µX,Y (x0, y) (col sum)

µY (y0) = P(Y = y0) =
∑
x

P(X = x, Y = y0) =
∑
x

µX,Y (x, y0) (row sum)

Proof. This is just the law of total probability. The events {Y = y}, as y ranges through all
possible values y in the state space of Y , form a partition of Ω. Hence

P(X = x0) =
∑
y

P({X = x0} ∩ {Y = y}).

The second equation is proved similarly. �

Thus, the sum of the column sums is equal to
∑

x P(X = x) which must equal 1.

In general, if we are presented with a table of number µ(x, y) and are told it is the joint
distribution of a pair of random variables X, Y , we can recover the distributions µX and
µY by taking the row and column sums:

P(X = x) =
∑
y

µ(x, y), P(Y = y) =
∑
x

µ(x, y).

In the table in Example 14.1, we wrote the row and column sums in the margins of the
table. This is common, and for this reason, the distributions you get by summing the
rows and columns of a two variable distribution are called the marginal distributions.
So Proposition 14.3 can be restated as follows: the marginals of µX,Y are the distributions µX
and µY .

We can do this for any number of random variables; the generalization is straightfor-
ward.

Example 14.4. Let X1, X2, X3 be the outcomes of tossing three fair coins. The joint distri-
bution µX1,X2,X3 is the probability measure on {0, 1}3 given (due to fairness) by

µX1,X2,X3(x1, x2, x3) = P(X1 = x1, X2 = x2, X3 = x3) =
1

8

for each triple (x1, x2, x3) ∈ {0, 1}3. In this case, the marginals require us to sum over the
other two variables: ∑

x2,x3

µX1,X2,X3(x, x2, x3) =
1

8
+

1

8
+

1

8
+

1

8
=

1

2
,

and indeed this is equal to P(X1 = x) for either choice x ∈ {0, 1}.

Example 14.5. Let B1, B2 be a partition of the sample space Ω. Let N be a Poisson(λ)
random variable. Suppose we perform an experiment N times (i.e. a random number of
times). Let Xi be the number of times that Bi occurs among the random number of trials.
(So there is randomness in the trials, and in the number we perform.)

First, we can calculate the probability that the number of trials we perform is exactly
n: P(N = n) = e−λ λ

n

n!
. Now, suppose we want to know the probability that B1 occurs n1
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times, while B2 occurs n2 times, for fixed n1, n2. In this case, we know that the number of
trials performed was n = n1 + n2. We can then calculate as follows:

P(X1 = n1, X2 = n2) = P(N = n,X1 = n1, X2 = n2)

= P(N = n)P(X1 = n1, X2 = n2|N = n)

= e−λ
λn

n!
P(X1 = n1, X2 = n2|N = n).

Now, given that the number of trials is the fixed number n, the number of times B1 oc-
curs is binomial: we repeat an experiment n times, and look for the number of “success”
outcomes B1 (which has probability p = P(B1)). Thus

P(X1 = n1, X2 = n2|N = n) =

(
n

n1

)
pn1(1− p)n2

=
n!

n1!n2!
P(B1)n1P(B2)n2 .

Thus,

P(X1 = n1, X2 = n2) = e−λ
λn

n!
· n!

n1!n2!
P(B1)n1P(B2)n2 .

We cancel the n!s, and sneakily rewrite the initial terms as

e−λλn = e−λP(B1)e−λP(B2)λn1λn2 .

Finally, this gives

µX1,X2(n1, n2) = P(X1 = n1, X2 = n2) = e−λP(B1)λ
n1

n1!
P(B1)n1 · e−λP(B2)λ

n2

n2!
P(B2)n2 .

So we have calculated the joint distribution of X1, X2. This allows us to calculate the
distributions of X1, X2 by taking the marginals.

µX1(n1) =
∞∑

n2=0

e−λP(B1) (λP(B1))n1

n1!
· e−λP(B2) (λP(B2))n2

n2!

= e−λP(B1) (λP(B1))n1

n1!

∞∑
n2=0

e−λP(B2) (λP(B2))n2

n2!

= e−λP(B1) (λP(B1))n1

n1!
.

That is,X1 is Poisson(λP(B1)). Similarly, we can calculate thatX2 is Poisson(λP(B2)). And,
better yet: the joint distribution µX1,X2 is the product of the marginals. In other words,
X1, X2 are independent.

This last point is remarkable. If n is fixed, then X1 + X2 = n, which means that they
are maximally dependent: one determines the other completely! But if we perform the
experiment a random (Poisson) number of times, they become statistically independent!
To see how this can be useful, consider this concrete example. Suppose the number of
cars that come through a fast-food drive-through in an hour is Poisson. Then the numbers
of cars with male drivers, and the number with female drivers, are each independent
Poissons as well.
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In Example 14.4, we saw that µX1,X2 was a product of two distributions. We then cal-
culated that these two distributions were, in fact, its marginals, and so concluded that
X1, X2 were independent. Actually, we didn’t need to go through this last step.

Proposition 14.6. Let µ : S × T → R be a probability distribution, and let µ1, µ2 denote its
marginals. Suppose there are functions f : S → R and g : T → R such that µ(x, y) = f(x)g(y).
Then there is a constant c so that f(x) = cµ1(x) and g(y) = 1

c
µ2(y).

Proof. We simply take the row and column sums.∑
y

µ(x, y) =
∑
y

f(x)g(y) = f(x)
∑
y

g(y),
∑
x

µ(x, y) =
∑
x

f(x)g(y) = g(y)
∑
x

f(x).

Let c1 =
∑

y g(y) and c2 =
∑

x f(x). Then, using the definitions of the marginals,

µ1(x) =
∑
y

µ(x, y) = c1f(x), µ2(y) =
∑
x

µ(x, y) = c2g(y).

Finally, since µ1 and µ2 are probability distributions, we have

1 =
∑
x

µ1(x) =
∑
x

c1f(x) = c1c2, 1 =
∑
y

µ2(y) =
∑
y

c2g(y) = c2c1.

Thus c1 = 1/c2. So taking c = c2 we have c1 = 1
c
, and so f(x) = cµ1(x) and g(x) = 1

c
µ2(x)

as claimed. Also, note

µ(x, y) = f(x)g(y) =
f(x)g(y)

c1c2

= µ1(x)µ2(y),

and as Example 14.2 shows, this means that the two random variables are independent.
�

The upshot of Proposition 14.6 is that, to prove to random variable are independent, we
only need to see that their joint distribution factors as some kind of product; from that
alone, we get independence (and can pick out the marginal distributions without calcu-
lation).
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15. LECTURE 15: OCTOBER 29, 2010

15.1. Computing from Joint Distributions. The joint distribution is the trump-card when
it comes to computing anything about a collection of random variables.

Theorem 15.1. Let X1, . . . , Xn be a collection of discrete random variables with state spaces
S1, . . . , Sn. Let µX1,...,Xn , the joint distribution, be known. If f : S1 × · · · × Sn → R is any
function, then the distribution of f(X1, . . . , Xn) can be calculated as

P(f(X1, . . . , Xn) = k) =
∑

(x1,...,xn)
f(x1,...,xn)=k

P(X1 = x1, . . . , Xn = xn)

=
∑

(x1,...,xn)
f(x1,...,xn)=k

µX1,...,Xn(x1, . . . , xn).

Example 15.2. Let f(x, y) = x+ y. Theorem 15.1, in this case, says

P(X + Y = k) =
∑
(x,y)
x+y=k

P(X = x, Y = y) =
∑
x

P(X = x, Y = k − x) =
∑
x

µX,Y (x, k − x).

For example, consider the random variables B,G from Example 14.1. The table in that
example gives the joint distribution µB,G. So we can compute, for example,

P(B +G = 2) =
3∑
i=0

µB,G(i, 2− i) = µB,G(0, 2) + µB,G(1, 1) + µB,G(2, 0) + µB,G(3,−1)

= 0.0875 + 0.175 + 0.0875 = 0.35.

Of course, B + G is the total number of children, and we started that example with the
knowledge that a couple has 2 children 35% of the time; so this is consistent.

Example 15.3. Suppose X, Y are independent. Then we know µX,Y (x, y) = µX(x)µY (y).
As calculated in Example 15.2, P(X + Y = k) =

∑
x µX,Y (x, k − x); in this case of inde-

pendence, that says P(X + Y = k) =
∑

x µX(x)µY (k − x) – a fact we proved already in
Theorem 7.6. But we can write down rules for other functions of the two variables. For
example,

P(XY = k) =
∑
(x,y)
xy=k

µX,Y (x, y) =
∑
x

µX,Y (x, k/x) =
∑
x

µX(x)µY (k/x).

Let’s consider a specific example. Roll two fair dice, and let X, Y be the values that come
up. Then

P(XY = 6) =
6∑
i=1

µX(i)µY (6/i).

Now, 6/1 = 6, 6/2 = 3, 6/3 = 2, and 6/6 = 1 are all in the state space of Y ; on the other
hand, 6/4 and 6/5 are not, and so in the sum those terms give probability 0. Hence

P(XY = 6) = µX(1)µY (6) + µX(2)µY (3) + µX(3)µY (2) + µX(6)µY (1) = 4 · 1

6
· 1

6
=

1

9
.

On the other hand, the only way to make 25 as a product of number in {1, 2, 3, 4, 5, 6} is
25 = 52, so P(XY = 25) = µX(5)µY (5) = (1

6
)2 = 1

36
.
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15.2. Conditional Distributions. In Examples 14.1 and 14.4, we calculated joint distribu-
tions using conditioning. This leads us to the notion of a conditional distribution:

P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)
=
µX,Y (x, y)

µY (y)
.

For fixed y, this is a probability on the state space S of X : P(X = · |Y = y) =
µX,Y (·,y)

µY (y)
. It

is important not to confuse it with the joint distribution P(X = x, Y = y), which does not
sum to 1 over x (only over both x, y).

Example 15.4. Let n be fixed, and suppose we perform and experiment n times. There
are three outcomes we’re looking for, B1, B2, B3, which partition the sample space. Set
pi = P(Bi). If Xi = the number of times Bi occurs, then the joint distribution of X1, X2, X3

is multinomial:

P(X1 = n1, X2 = n2, X3 = n3) =

(
n

n1 n2 n3

)
pn1

1 p
n2
2 p

n3
3 .

Let’s compute the conditional distribution of X1, X2 given that X3 = k (for some fixed
k ≤ n).

P(X1 = n1, X2 = n2|X3 = k) =
P(X1 = n1, X2 = n2, X3 = k)

P(X3 = k)
.

The denominator is the distribution of X3 evaluated at k. Viewing B1 ∪B2 as the comple-
ment of B3, we see X3 has a binomial distribution:

P(X3 = k) =

(
n

k

)
pk3(1− p3)n−k.

Thus,

P(X1 = n1, X2 = n2|X3 = k) =

(
n

n1 n2 k

)
pn1

1 p
n2
2 p

k
3(

n
k

)
pk3(1− p3)n−k

.

We may simplify (
n

n1 n2 n3

)(
n
k

) =
n!

n1!n2!k!

n!
k!(n−k)!

=
(n− k)!

n1!n2!

Hence, canceling the pk3 terms, and noting that 1− p3 = p1 + p2, we have

P(X1 = n1, X2 = n2|X3 = k) =
(n− k)!

n1!n2!

pn1
1 p

n2
2

(p1 + p2)n−k
.

Note that n1 + n2 = n− k, and so we can write this finally as

P(X1 = n1, X2 = n2|X3 = k) =

(
n1 + n2

n1

)(
p1

p1 + p2

)n1
(

p2

p1 + p2

)n1

.

Observe that p2

p1+p2
= 1− p1

p1+p2
. Hence, we see that the conditional distribution is binomial

binomial(n1 + n2,
p1

p1+p2
) with outcomes n1. This is what we should have expected: once

we know that k of the outcomes are B3, there are n − k = n1 + n2 remaining trails. Since
P(B1) = p1 and P(B2) = p2, the fraction of them we expect to be B1 is p1

p1+p2
, and so we

expect a binomial with n1 +n2 trials, with probability of success p1

p1+p2
, given n1 trials – i.e.

the answer we calculated.
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15.3. Cumulative Distribution Functions. So far we have considered random variables
X : Ω → S with state spaces S ⊆ N (i.e. discrete random variables). For such random
variables, P(X = x) is non-zero for any x ∈ S. We want to move to more general kinds
of random variables, where it might even happen that P(X = x) = 0 for any x ∈ S (like
a uniformly random number in the interval [0, 1]). To avoid this problem, we can always
view X : Ω→ R, and then think about the numbers

FX(x) = P(X ≤ x) (15.1)

instead of the numbers µX(x) = P(X = x). The function in Equation 15.1 is called the
cumulative distribution function of X . Let’s see what it looks like in the discrete setting
we’ve been discussing.

Example 15.5. LetX : Ω→ S ⊂ R be a discrete random variable; for the sake of argument,
let’s take S = N. Then for any x, the event {X ≤ x} can be decomposed as

{X ≤ x} =
⋃
n∈N
n≤x

{X = n},

and the union is disjoint. Hence,

FX(x) = P(X ≤ x) =
∑
n∈N
n≤x

P(X = n) =
∑
n∈N
n≤x

µX(n).

So, if x is not a positive integer, then there is an integer m with m < x < m + 1, and so
{n ∈ N : n ≤ x} = {n ∈ N : n ≤ m}. In other words, for ALL x ∈ (n, n + 1) we have
FX(x) = FX(m). So FX is a step-function.

Now, for any positive integer m,

FX(m)− FX(m− 1) =
m∑
n=0

µX(n)−
m∑
n=0

µX(n) = µX(m).

So the size of the mth jump is exactly µX(m). Thus, the function FX encodes exactly the
same information as µX for discrete random variable.

For a concrete example, let X be the sum of 2 fair dice (where 0 means tails and 1 means
heads). Then we know that

µX(0) =
1

4
, µX(1) =

1

2
, µX(2) =

1

4
.

Then, we can calculate the cumulative distribution function of X :

FX(x) =


0, x < 0
1
4
, 0 ≤ x < 1

3
4
, 1 ≤ x < 2

1, x ≥ 2

.
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16. LECTURE 16: NOVEMBER 1, 2010

16.1. Cumulative Distribution Functions. Example 15.5 shows that if X is a discrete
random variable, then its cumulative distribution function FX is a step function, with
steps at the states of X of heights equal to the probabilities of the states. It follows then
that FX(x) is 0 for x sufficiently small, and FX(x) = 1 for x sufficiently large. Also, FX
is a monotone increasing function. Of course, FX is not continuous. But the value of FX at
the jumps is equal to the new, higher value. One way of saying this is that FX is right-
continuous:

lim
x→x0+

FX(x) = FX(x0).

These properties actually follow directly from the axioms of probability. As the following
theorem shows, it is here (finally) that Axiom 3 (the countable additivity of P, a.k.a. the
continuity of P) comes into play.

Theorem 16.1. Let (Ω,P) be a probability space, and let X : Ω→ R be any random variable (not
necessarily discrete). Then the function FX(x) = P(X ≤ x) has the following properties:

(a) FX is monotone increasing: if x < y then FX(x) ≤ FX(y).

(b) lim
x→−∞

FX(x) = 0, lim
x→+∞

FX(x) = 1.

(c) FX is right-continuous: for any x0, lim
x→x0+

FX(x) = FX(x0).

Proof. (a) By definition, FX(x) = P(X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x}). If x < y, then
X(ω) ≤ x implies that X(ω) ≤ y; in other words, {X ≤ x} ⊆ {X ≤ y}. Hence,
P(X ≤ x) ≤ P (X ≤ y).

(b) We’ll just look at x ∈ N here. FX(n) = P(X ≤ n). The events An = {X ≤ n}
satisfy An ≤ An+1. Note that, since X takes only finite values,

⋃
nAn = Ω, meaning

An ↑ Ω as n → ∞ and so by the continuity axiom of probability, limn→∞ FX(n) =
limn→∞ P(An) = P(Ω) = 1. On the other hand, An ↓ ∅ as n→ −∞ (since any value
of X is bigger than some small negative number). Hence, by the continuity axiom
of probability, limn→−∞ FX(n) = limn→−∞ P(An) = P(∅) = 0.

(c) Take An = {X ≤ x0 + 1
n
}. Then An ↓ {X ≤ x0} as n→∞, and so

lim
x→x0+

FX(x) = lim
x→x0+

P(X ≤ x) = lim
n→∞

P(X ≤ x0 + 1
n
)

= lim
n→∞

P(An) = P(X ≤ x0) = FX(x0).

�

If F is any function R → [0, 1] satisfying properties (a),(b),(c) in Theorem 16.1, we call
F a cumulative distribution function. In general, any such function is the cumulative
distribution function of some random variable. Example 15.5 shows that, when X is
discrete, FX is a step function. Here’s an example that is not.

Example 16.2. Consider the function F given by

F (x) =


0, x < 0

x, 0 ≤ x < 1

1, x ≥ 1

.
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A random variableX with this cumulative distribution function FX = F is called uniform
on [0, 1]. We encountered this distribution in Example 2.3, where our intuition told us that
we should find P(X = x0) = 0 for any x0. We can see this right from the form of F . The
distribution of X is given by P(X ≤ x) = FX(x). Let’s look at the probability that X lies
in a certain interval (a, b]. Note that

(a, b] = (−∞, b] ∩ (a,∞) = (−∞, b] ∩ (−∞, a]c.

Thus,
{X ∈ (a, b]} = {X ≤ b} ∩ {X ≤ a}c,

and so
P(X ∈ (a, b]) = P(X ≤ b)− P(X ≤ a) = FX(b)− FX(a).

So, for the distribution in this example, if a, b ∈ [0, 1] then we have FX(a) = a and FX(b) =
b, and so P(X ∈ (a, b]) = b− a.

What about P(X ∈ [a, b])? This is P(X = a) +P(X ∈ (a, b]) = P(X = a) + b− a. So how do
we evaluate P(X = a)? Well, fix some small number ε > 0, and look at

P(X ∈ (a− ε, a+ ε]) = (a+ ε)− (a− ε) = 2ε.

Notice that {a} ⊂ (a− ε, a+ ε] for any small ε > 0, so {X = a} ⊆ {X ∈ (a− ε, a+ ε]}. Thus,
P(X = a) ≤ P(X ∈ (a − ε, a + ε]) = 2ε. This is true for any ε > 0. For example, taking
ε = 1

2
× 10−10, this means P(X = a) < 0.0000000001. Taking ε > 0 smaller and smaller, we

have P(X = a) = 0 as we thought.

In Example 16.2, we saw two very important general facts. First, as we calculated (in
general),

P(X ∈ (a, b]) = FX(b)− FX(a). (16.1)
The second fact, which we calculated implicitly, is

P(X = a) = lim
ε↓0

[FX(a+ ε)− FX(a− ε)] . (16.2)

Actually, since F is right-continuous at all points, we can simplify this to

P(X = a) = FX(a)− lim
ε↓0

FX(a− ε).

From Equation 16.2, we see that P(X = a) = 0 if FX is continuous at a. In general, the only
points a where P(X = a) > 0 are the jumps in FX , where P(X = a) is the height of the
jump.

Example 16.3. Consider the following graph of the function



70

F (x) =



0, x < 0
1
2
x, 0 ≤ x < 0.2

0.2, 0.2 ≤ x < 0.6

0.2 + 2(x− 0.6)2, 0.6 < x < 1.1

1, x ≥ 1.1

.

This function is monotone increasing, 0 when x → −∞, 1 when x → ∞, and continuous
except at the points 0.2 and 1.1 where it is right continuous. Hence, F is a cumulative
distribution function. IfX is a random variable with this cumulative distribution function
FX = F , then we have P(X = x) = 0 unless x ∈ {0.2, 1.1}, where

P(X = 0.2) = F (0.2)− lim
ε↓0

F (0.2− ε) = 0.2− lim
ε↓0

1

2
(0.2− ε) = 0.2− 0.1 = 0.1

and

P(X = 0.6) = F (1.1)− lim
ε↓0

F (1.1− ε) = 1− lim
ε↓0

(0.2 + 2(1.1− ε− 0.6)2)

= 1− (0.2 + 2(0.5)2) = 0.3.

Although all other points have probability 0 of occurring, we can compute the probability
that X ∈ [a, b] for any interval. For example,

P(X ∈ [0.1, 0.8]) = P(X = 0.1) + P(X ∈ (0.1, 0.8]) = 0 + F (0.8)− F (0.1)

= (0.2 + 2(0.8− 0.6)2)− 1
2
(0.2)

= 0.22− 0.1 = 0.12.

16.2. Probability Densities. Now let’s leave discreteness behind us, and forget about
jumps altogether. If F is a cumulative distribution function without jumps, then it is
a continuous, monotone increasing function (increasing from 0 to 1). To get the intu-
ition right, let’s assume F is even nicer than this: we temporarily assume that F is C1,
continuously-differentiable. In this case, F has a continuous derivative f = F ′. Since
F is monotone-increasing, f ≥ 0. And we can recover F from f with the Fundamental
Theorem of Calculus:

F (b) =

∫ b

−∞
f(x) dx.

More generally, if a < b then

F (b)− F (a) =

∫ b

a

f(x) dx. (16.3)

The derivative f therefore allows us to recover the cumulative distribution function F .
The only constraint on f (other than f ≥ 0) relates to the fact that limx→∞ F (x) = 1. This
means we must have ∫ ∞

−∞
f(x) = 1.

Such a function is called a probability density.

The Fundamental Theorem of Calculus goes two ways, actually: if there exists a continu-
ous f that makes 16.3 true, then F is differentiable, and F ′ = f . But Equation 16.3 holds
true for some discontinuous functions as well; we only need f to be Riemann integrable.
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Since we are assuming F is continuous, if X is a random variable with FX = F , then
P(X = x) = 0 for all x. Thus P(X ∈ [a, b]) = P(X ∈ (a, b]) = P(X ∈ [a, b)) = P(X ∈
(a, b)) = F (b)− F (a).

Definition 16.4. Let X be a real-valued random variable. If there exists a Riemann-integrable
function fX ≥ 0 with total integral

∫∞
−∞ fX(x) dx = 1 such that

FX(b) =

∫ b

−∞
fX(x) dx, b ∈ R

then we call fX the probability density of X . If X has a density, we call it a continuous
random variable. In this case, for any a ≤ b we have

P(X ∈ [a, b]) =

∫ b

a

fX(x) dx. (16.4)

Remark 16.5. We interpret “Riemann integrable” loosely in Definition 16.4. Technically, a
Riemann integrable function is bounded; we will allow unbounded densities, provided
the improper Riemann integral exists. Recall that if f is Riemann integrable on [a, x for
all x < b, the improper integral of f on [a, b] is defined to be the limit∫ b

a

f(t) dt = lim
x↑b

∫ x

a

f(t) dt.

Similarly, ∫ ∞
−∞

f(t) dt = lim
r→∞

∫ r

−r
f(t) dt.

Note that, if X is a continuous random variable (according to Definition 16.4), then it
has a density fX which is Riemann integrable. This means that the cumulative distribu-
tion function is continuous.

Proposition 16.6. If f is (improperly) Riemann integrable on (−∞,∞) andF (x) =
∫ x
−∞ f(t) dx,

then F is continuous.

Proof. Let x ∈ R. Then by definition

F (x) =

∫ x

−∞
f(t) dx = lim

r→∞

∫ x

−r
f(t) dt.

If x is a vertical asymptote of f , then the value of this integral is defined to be the limit

F (x) = lim
y→x

∫ y

−r
f(t) dy = lim

y→x
F (y),

and so F is automatically continuous at x. If x is not a vertical asymptote, then (for −r
sufficiently close to x) we have f is bounded on [−r, x]. That is, there is a constant M such
that f(t) ≤M for t ∈ [−r, x]. Hence, for y ∈ [−r, x],

F (x)− F (y) =

∫ x

−r
f(t) dt−

∫ y

−r
f(t) dt =

∫ x

y

f(t) dt ≤
∫ x

y

M dt = M(y − x),

and this tends to 0 as y → x; hence, F is continuous at x. �
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This is the reason we callX a continuous random variable: ifX is a continuous r.v. (i.e. if it
has a density fX), then FX is a continuous function. But if the density fX is not continuous,
then the cumulative distribution FX is not differentiable (though it is continuous).

So, if X is a discrete random variable, or more generally if FX is not continuous at some
point, then X cannot possibly have a density fX . (If it did have one, then at the jump
points in FX the ”function” fX would have to have infinite spikes.) The density is a
substitute for the distribution value at a point: you can think of fX(x) as containing the
same sort of information that µX(x) = P(X = x) does in the discrete case. To be a little
more precise: if fX is close to constant on a tiny interval [x, x + ∆x] containing x (for
example if fX is continuous), then

P(x ≤ X ≤ x+ ∆x) ≈ fX(x)∆x.

As ∆x → 0, both sides tend to 0, which is why fX is not a probability, it is a probability
density.

Example 16.7. For a < b in R, consider the function

f(x) =

{
1
b−a , a ≤ x ≤ b

0, otherwise
.

FIGURE 1. The probability density f .

This function is Riemann integrable, and non-negative, so it is a probability density. The
antiderivative F of f is also a piecewise function,

F (x) =

∫ x

−∞
f(t) dt =


0, x < a
x−a
b−a , a ≤ x ≤ b

1, x > b

.

This cumulative distribution function is continuous, but non-differentiable at the points
a and b. If a ≤ c < d ≤ b, then the random variable X with density f satisfies

P(X ∈ [c, d]) = F (d)− F (c) =
d− c
b− a

.

I.e. the probability that X is in [c, d] is the ratio of the length of [c, d] to the whole interval
[a, b]. We call such a random variable uniform on [a, b].
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FIGURE 2. The cumulative distribution function F .

Remark 16.8. A word of caution. We showed above that if X is a continuous random vari-
able (namely it has a probability density fX) then its cumulative distribution function FX
is continuous. The converse of this statement is not always true. That is: there are continuous
cumulative distribution functions F for which no density exists. These are pathological
examples that are beyond the scope of this course. In analysis, a function F which has a
density is called absolutely continuous. It would be more accurate to use the term absolutely
continuous random variable for an X which possesses a density fX ; but the terminology is
very standard, so we will stick with it.
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17. LECTURE 17: NOVEMBER 3, 2010

Let’s review our new view-point, and the new (and old) objects we’re considering.

• Random variable: a function X : Ω→ R where (Ω,P) is a probability space.

• Distribution µX : the probability on R defined as follows: for a subset U of R,

P(X ∈ U) = P({ω ∈ Ω : X(ω) ∈ U}) ≡ µX(U).

• Discrete Distribution: If the set of values S that X can assume (i.e. S is the state
space) is finite (or infinite but discrete, like the natural numbers N), then for any
subset {s1, s2, . . . , sn} of S,

µX({s1, . . . , sn}) = µX(s1) + · · ·+ µX(sn).

So to know µX , we only need to know the probability mass function (also denoted
µX):

µX : S → [0, 1], µX(s) = P(X = s).

But there are lots of examples where P(X = s) = 0 for all s in the state space; we
need another tool to understand µX in this case.

• Cumulative Distribution Function: For any random variable X , we define a function
FX : R→ [0, 1] by

FX(s) = P(X ≤ s).

This function is non-decreasing, right continuous, and at ±∞ has the following
limits: lims→−∞ FX(s) = 0, and lims→+∞ FX(s) = 1. If there is a value s where
P(X = s) = h > 0, then FX has a jump-discontinuity at s, with height h. If
P(X = s) = 0 for all s, then FX is continuous.

• Probability Density: Sometimes, the cumulative distribution function FX of a ran-
dom variable is continuous enough that it is an antiderivative. If there exists a
function fX : R→ R such that

FX(s) =

∫ s

−∞
fX(x) dx

that function fX is called the probability density of X . If it exists, FX must be
continuous; thus, if there is any value swhere P(X = s) > 0 (e.g. the discrete case),
then fX does not exist. If a density exists, then the properties of its antiderivative
FX tell us that fX(x) ≥ 0 for all x, and

∫∞
−∞ f(x) dx = 1.

• Fundamental Theorem of Calculus: If FX is even nicer, namely C1 (continuously dif-
ferentiable, meaning that F ′X is a continuous function), then by the Fundamental
Theorem of Calculus

d

ds
FX(s) =

d

ds

∫ s

−∞
fX(x) dx = fX(s).

I.e. the density is the derivative of the cumulative distribution function, in the case
that it is differentiable. But there are lots of important examples where fX exists
(but is not continuous); then FX has “sharp-corners” at those points.
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Example 17.1 (Exponential Density). Let λ > 0. The function f(x) = λe−λx for x ≥ 0 and
f(x) = 0 for x < 0 is a probability density: it is ≥ 0, Riemann integrable, and∫ ∞

0

λe−λx = − e−λx
∣∣x=∞
x=0

= −(0− 1) = 1.

If X is a random variable with fX(x) = λe−λx, we call X an exponential(λ) random
variable.

We can calculate FX from fX , by integrating.

FX(x) =

∫ x

−∞
fX(t) dx =

∫ x

0

λe−λt dt = −e−λt
∣∣t=x
t=−∞ = −(e−λx − 1) = 1− e−λx.

To demonstrate how useful these tools (FX and fX) can be, let’s look at a “memory” prop-
erty of these random variables. Since an exponential(λ) random variable X is continuous,
P(X = x) = 0 for all x. But we can look at the event that X > x. From the calculation we
just did, we have

P(X > x) = 1− P(X ≤ x) = 1− FX(x) = 1− (1− e−λx) = e−λx.

So, let’s look at conditional probabilities. Suppose we know already that X > x. How
likely is it that X > x+ y? Well,

P(X > x+ y|X > x) =
P(X > x+ y,X > x)

P(X > x)
.

Assuming that y > 0, the event {X > x + y} is a subset of the event {X > x}. Thus
P(X > x+ y,X > x) = P(X > x+ y), and so

P(X > x+ y|X > x) =
P(X > x+ y)

P(X > x)
=
e−λ(x+y)

e−λx
= e−λy = P(X > y).

This is often described by saying that X is “memoryless”. If X describes the amount of
time you must wait for an event, then if you have been waiting x, the probability you
must wait an additional y is the same as if you hadn’t been waiting at all!

Exponential random variables are used to model radioactive decay: if X denotes the
length of time before any particular particle decays, thenX is assumed to have an exponential(λ)
distribution for some λ. This parameter has physical meaning: ln 2/λ is called the half-life.
We will come back to this we discuss medians.

Example 17.2 (Power Laws). Let ρ > 1, and define

f(x) =

{
(ρ− 1)x−ρ, x ≥ 1

0, x < 1
.

Then f ≥ 0, and is Riemann integrable with∫ ∞
−∞

f(x) =

∫ ∞
1

(ρ− 1)x−ρ dx = (ρ− 1)
1

−ρ+ 1
x−ρ+1

∣∣∣∣x=∞

x=1

= (−1)(0− 1) = 1.
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A random variable with this function as its density is said to have a power law with expo-
nent ρ. If X has a power law, then

FX(x) =

∫ x

−∞
fX(t) dx =

∫ x

1

(ρ− 1)t−ρ dt = (ρ− 1)
1

−ρ+ 1
t−ρ+1

∣∣∣∣t=x
t=1

= −(x−ρ+1 − 1)

= 1− x−(ρ−1).

Hence, we can calculate: if X has a power law with parameter 2, say, then

P(3 ≤ X ≤ 4) = P(X = 3) + P(3 < X ≤ 4) = 0 + FX(4)− FX(3) = (1− 1
4
)− (1− 1

3
) = 1

12
.

Example 17.3 (Normal Law). Let t > 0, and define

f(x) = 1√
2πt
e−x

2/2t.

This is called the normal denisty or Gaussian density with variance t. (We will soon see
that it is appropriate to use the word variance here.) This distribution is so important that
we give it a short symbol: we call it

N(0, t).

(The 0 refers to the expected value, which we’ll get to next lecture.) It is strictly positive
for all x. To calculate its integral, we use a trick with polar coordinates:(∫

R
f(x) dx

)2

=

∫
R2

f(x)f(y) dxdy =
1

2πt

∫
R2

e−(x2+y2)/2t dxdy.

Substituting polar coordinates this becomes

1

2πt

∫ 2π

0

∫ ∞
0

e−r
2/2trdrdθ =

1

2πt

(∫ 2π

0

dθ

)(∫ ∞
0

re−r
2/2t dr

)
.

The first integral is equal to 2π. The second integrand is an antiderivative:
d

dr
e−r

2/2t = −2r

2t
e−r

2/2t = −1

t
re−r

2/2t,

and so the second integral is∫ ∞
0

re−r
2/2t dr = −t

∫ ∞
0

d

dr
e−r

2/2t dr = −t e−r2/2t
∣∣∣r=∞
r=0

= −t(0− 1) = t.

Thus, the factor 1
2πt

gets canceled out, and so
(∫

R f(x) dx
)2

= 1. Since f ≥ 0, the integral
is positive, and so the total mass is 1, making f a probability density.

As we will see in the next few weeks, this is the most important probability density in
the world. It can be a little challenging to work with, however. If we wanted to compute
the cumulative distribution function of a normal random variable X (with variance t), we
would have to evaluate the integral

FX(x) =

∫ x

−∞

1√
2πt

e−y
2/2t dy.

It is a long-known fact that this function (while very smooth and having a nice power-
series expansion) cannot be written down in “closed-form” (i.e. cannot be expressed as a
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composition of polynomials, radicals, exponential/logarithmic, and trigonometric func-
tions). FX is sometimes called the error function. Using numerical integration, some of
its properties can be approximated as closely as we like. For example, if X has the normal
density with variance t, then it can be computed that

P(|X| ≤
√
t) = FX(

√
t)− FX(−

√
t) ≈ 0.68

P(|X| ≤ 2
√
t) = FX(2

√
t)− FX(−2

√
t) ≈ 0.95

17.1. Transforming random variables. One very helpful feature of continuous random
variables is that we have tools like the fundamental theorem of calculus to help us figure
out how distributions change when we compose with new functions.

Example 17.4. Suppose X is exponential(λ). What is the density of aX for some a > 0?

To answer this, we will first calculate the cumulative distribution function.

FaX(x) = P(aX ≤ x) = P(X ≤ x/a) = FX(x/a).

Actually, this calculation works for any distribution. Now, as calculated in Example 17.1,
we can compute

FX(x/a) = 1− e−λx/a.
So this is the cumulative distribution function of aX . To find the density of aX , we simply
have to differentiate (which is legal here since FX is differentiable).

faX(x) =
d

dx
(1− e−λx/a) =

λ

a
e−

λ
a
x.

In other words, aX is a an exponential(λ/a) random variable.

Actually, using calculus, we can see how this kind of transformation works for any (smooth
enough) distribution.

Theorem 17.5. Let X be a random variable with a continuous density fX . Let r : R → R be a
differentiable function that is strictly-increasing. Then the density of the random variable r(X) is

fr(X)(x) = fX(r−1(x)) · (r−1)′(x).

Proof. We work with cumulative distribution functions.

Fr(X)(x) = P(r(X) ≤ x) = P(X ≤ r−1(x)).

The last equality is valid since r is strictly-increasing and differentiable, so it has an in-
verse, and r(y) ≤ x if and only if y ≤ r−1(x). Well, P(X ≤ r−1(x)) = FX(r−1(x)). Since
the density of X is continuous, we can use the fundamental theorem of calculus to get the
new density.

fr(X)(x) =
d

dx
Fr(X)(x) =

d

dx
FX(r−1(x)) = F ′X(r−1(x)) · d

dx
r−1(x) = fX(r−1(x))(r−1)′(x),

as claimed. �
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Example 17.6. Suppose X has an exponential(λ) distribution. Then we can calculate the
density of the new random variable eX . The function r(x) = ex is strictly-increasing and
differentiable, so we apply Theorem 17.5 to find

feX (x) = fX(r−1(x)) · (r−1)′(x).

We can explicitly calculate that r−1(x) = ln x and (r−1)′(x) = 1
x
. So

feX (x) = fX(lnx) · 1

x
.

When lnx < 0, this is 0 since fX(y) = 0 for y < 0. For lnx ≥ 0 (i.e. x ≥ 1), the density of X
is fY (y) = λe−λy, so in this regime

feX (x) = λe−λ lnx · 1

x
.

We can simplify e−λx = eln(x−λ) = x−λ, so for x ≥ 1,

feX (x) = λx−λ · 1

x
= λx−(λ+1).

In other words, eX has a power law distribution with parameter ρ = λ+ 1.
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18. LECTURE 18: NOVEMBER 5, 2010

Example 18.1. Point a flashlight at a(n infinitely tall) wall, with an angle chosen uniformly from
[−π

2
, π

2
]. Let X be the height on the wall where the light hits. What is the distribution of X?

Let Θ be the random angle chosen. Θ is uniform on [−π
2
, π

2
], which means that its density

is

fΘ(θ) =

{
1
π
, −π

2
≤ θ ≤ π

2

0, otherwise

Now, from trigonometry, we see that the height X is the opposite side of a right triangle
with angle Θ. If you stand distance d away from the wall, this means X

d
= tan Θ. So X =

r(Θ) = d tan Θ. The function r is strictly-increasing and differentiable, so by Theorem
17.5,

fX(x) = fr(Θ)(x) = fΘ(r−1(x))(r−1)′(x).

The inverse function is r−1(x) = tan−1(x/d). This function is always valued in (−π
2
, π

2
),

and so for any x the variable θ = tan−1(x/d) has fΘ(θ) = 1
π

. Now,

d

dx
r−1(x) =

d

dx
tan−1(x/d) =

1

1 + (x/d)2
· 1

d
=

d

d2 + x2
.

Hence,

fX(x) =
d

π
· 1

d2 + x2
.

Normalizing to d = 1, this is known as the Cauchy density, the density of the Cauchy
distribution.

Example 18.2. Suppose that X is exponential(λ). Let Y = 1− e−λX . What is the density of Y ?

Let F (x) = 1 − e−λx. This function is strictly-increasing and differentiable, so we may
change variables a la Theorem 17.5. We will do it from scratch here. First note that e−λx ≤
1 when x ≥ 0, and e−λx > 0 for all x. Since X is exponential(λ), P(X < 0) = 0, and so we
have P(F (X) ∈ (0, 1)) = 1. Thus we can immediately see that FY (y) = 1 for y ≥ 1 and
FY (y) = 0 for y ≤ 0. For y ∈ (0, 1), we calculate

FY (y) = P(Y ≤ y) = P(1− e−λX ≤ y)

= P(1− y ≤ e−λX)

= P(ln(1− y) ≤ −λX)

= P(X ≤ − 1
λ

ln(1− y)) = FX(− 1
λ

ln(1− y)).

When y ∈ (0, 1), ln(1− y) ∈ (−∞, 0), and so x = − 1
λ

ln(1− y) > 0. Thus

FX(x) = 1− e−λx = 1− e−λ·(−
1
λ

) ln(1−y)) = y.

That is, the cumulative distribution function of Y is

FY (y) =


0, y ≤ 0

y, 0 < y < 1

1, y ≥ 1

.

In other words, Y has a uniform distribution on [0, 1].
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The result of Example 18.2 is actually quite general; we can state it as the following.

Proposition 18.3. Let X be a continuous random variable with cumulative distribution function
FX . Then the random variable Y = FX(X) is uniform on [0, 1].

Proof. Since the range of FX is contained in [0, 1], the same is true for Y , and so we know
already that FY (y) = 0 for y ≤ 0 and FY (y) = 1 for y ≥ 1. In between, let us first make
the simplifying assumption that the function FX is strictly increasing and continuously
differentiable. (This is the same as assuming that the density fX is continuous and strictly
positive.) Then we can apply Theorem 17.5 directly to get for y ∈ (0, 1)

fY (y) = fX(F−1
X (y)) · (F−1

X )′(y) = F ′X(F−1
X (y)) · (F−1

X )′(y).

The chain rule says that

(FX ◦ F−1
X )′(y) = F ′X(F−1

X (y)) · (F−1
X )′(y).

But FX ◦ F−1
X (y) = y, so the derivative of this function is just 1. Thus, for 0 < y < 1,

fY (y) = 1, showing that Y is uniform on [0, 1].

Actually, we don’t need this fancy an approach, or the differentiability assumption. If FX
is strictly increasing, then so is F−1

X , and we can compute directly with the cumulative
distribution functions: for y ∈ (0, 1)

FY (y) = P(FX(X) ≤ y) = P(X ≤ F−1
X (y)) = FX(F−1

X (y)) = y. (18.1)

This is problematic if FX isn’t strictly-increasing; but we can fix this by thinking about
the graph. If FX is flat, FX(x) = y0 for all x ∈ [x0, x1], then the reflection of the graph
of FX across the line y = x gives a function which has a jump at y0 from x0 up to x1. To
formalize this, we can generally define

F−1
X (y) ≡ min{x : F (x) ≥ y}. (18.2)

This is equal to the inverse in the case that FX is strictly-increasing; in general, it gives
a function with jumps and puts the value at the bottom of the jump. (I.e. F−1

X is left-
continuous, not right-continuous.) With this definition, the argument of Equation 18.1
works in general. In fact, it is not even necessary for X to be continuous! (F−1

X will have
jumps where X is flat, and will be flat where X has jumps.) �

We can turn this around to give a very useful construction of a random variable with
any given distribution.

Theorem 18.4. Let U be a uniform random variable on [0, 1]. Let F be any cumulative distri-
bution function. Then the random variable X = F−1(U) has cumulative distribution function
F .

Proof. The function F−1 used in the statement is the one in Equation 18.2. The idea of the
proof is captured in the special case that F is strictly-increasing, so we’ll stick to that case
here. We have

FX(x) = P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F (x)) = FU(F (x)).

Now, the function FU(y) = y when y ∈ [0, 1], and since F is a cumulative distribution
function, F (x) ∈ [0, 1] for sure. Thus, FX(x) = FU(F (x)) = F (x) – i.e. FX = F , as desired.
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To make this work in general, the only step that needs to be verified is the condition

F−1(y) ≤ x ⇐⇒ y ≤ F (x).

The function of Equation 18.2 is designed exactly to make this true for all x, y. �

Theorem 18.4 is a vital theoretical and practical tool. Theoretically, it allows us to conclude
that any distribution function really is the distribution function of some random variable:
all we need to know is that a uniform random variable exists! This is also of great practical
interest.

Example 18.5. Suppose that I want to simulate an exponential(3) random variable; how
do I do it? First I generate a list of uniformly random data points u1, u2, . . . , un in [0, 1].
Then I take the cumulative distribution function of the exponential(3) distribution, F (x) =
1 − e−3x, I find its inverse F−1(y) = −1

3
ln(y − 1), and then I compose: since u1, u2, . . . , un

are samples of a uniform random variable U , the data set

−1

3
ln(u1 − 1), . . . ,−1

3
ln(un − 1)

are samples from the random variable F−1(U), which is exponential(3) according to Theo-
rem 18.4. This is actually how computer software (like Matlab, Maple, Mathematica, and
statistics packages) generate random data with some given distribution: all the program
really knows how to do is generate random uniform data; it then transforms it using
Theorem 18.4 to any desired distribution.

18.1. Expected Value. For discrete random variables X , we defined the expected value
E(X) (when it exists) to be

E(X) =
∑
x

xP(X = x).

This won’t do as a good definition for a continuous random variable, since P(X = x) =
0 for all x, and the sum would have a continuum of terms. To figure out what E(X)
should mean in the continuous setting, we approach the problem like Riemann did when
formally defining the integral as a limit of sums.

Suppose X is a continuous random variable with real values. To simplify matters, let’s
assume P(X ∈ [a, b]) = 1 for some finite interval [a, b]. (Such a random variable is called
bounded; equivalently, we are assuming that fX is 0 outside [a, b].) So the cumulative
distribution function F = FX is a continuous function with F (x) = 0 for x ≤ a and
F (x) = 1 for x ≥ b. Let’s further suppose that F is actually C1 on the interval [a, b]. Now,
let’s approximate this function by a step function: let a = x0 < x1 < x2 < · · · < xn = b be
a partition of this interval. Let Y be a discrete random variable with

FY (x) = F (xj), xj ≤ x < xj+1.

(I.e. we do left-end-point approximation.) This means that

P(Y = xj) = F (xj)− F (xj−1).

So

E(Y ) =
n∑
j=1

xjP(Y = xj) =
n∑
j=1

xj[F (xj)− F (xj−1)].
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Now, since F is C1 on each interval [xj−1, xj], the mean value theorem shows us that there
is a point x∗j ∈ [xj−1, xj] where

F (xj)− F (xj−1) = F ′(x∗j)(xj − xj−1).

Since F is differentiable, F ′(x) = fX(x) is the density ofX . So, putting the pieces together,
we have

E(Y ) =
n∑
j=1

xjfX(x∗j)(xj − xj−1).

This is a Riemann sum! If we take the partition points xj closer and closer together, we
get

n∑
j=1

xjfX(x∗j)(xj − xj−1)→
∫ b

a

xfX(x) dx.

On the other hand, when the partition points are very close together, Y is a good approx-
imation to X . All this motivates our definition.

Definition 18.6. Let X be a continuous random variable, with density fX . The expectation or
expected value of X , denoted E(X) is defined to be

E(X) =

∫ ∞
−∞

xfX(x) dx

when this integral exists and is finite.

Example 18.7. Let X ∼ exponential(λ). Then fX(x) = λe−λx for x > 0, and so

E(X) =

∫ ∞
0

x · λe−λx dx.

This is an integration by parts problem: setting U = x and dV = λe−λx dx, we have

E(X) =

∫ ∞
0

U dV = UV |∞0 −
∫ ∞

0

V dU.

Note that V =
∫
dV =

∫
λe−λx dx = −e−λx + C. (When interpreting this integral as the

cumulative distribution function of X , we need to take C = 1, but we can take any C we
like since it will cancel between the integral and boundary terms. So it is most convenient
here to take C = 0.) Hence

E(X) = −xe−λx
∣∣x=∞
x=0

+

∫ ∞
0

e−λx dx.

When x = 0, xe−λx = 0 · 1 = 0; as x→∞, xe−λx → 0 as well, so the boundary terms are 0.
For the integral, we have

E(X) =

∫ ∞
0

e−λx dx = − 1

λ
e−λx

∣∣∣∣x=∞

x=0

= −1

λ
(0− 1) =

1

λ
.

So an exponential(λ) random variable has expectation 1
λ

.
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19. LECTURE 19: NOVEMBER 8, 2010

Example 19.1. Let X have a power law, fX(x) = (ρ− 1)x−ρ, x ≥ 1, for some ρ > 1. Then

E(X) =

∫ ∞
1

x · (ρ− 1)x−ρ dx = (ρ− 1)

∫ ∞
1

x−ρ+1 dx.

Now we run into a little trouble. If 1 < ρ ≤ 2, then −ρ + 1 ∈ [−1, 0), and so x−ρ+1 is not
integrable. Thus, the power law does not have a finite expectation for 1 < ρ ≤ 2. When
ρ > 2, we have

E(X) = (ρ− 1)
1

−ρ+ 2
x−ρ+2

∣∣∣∣x=∞

x=1

=
ρ− 1

2− ρ
(0− 1) =

1− ρ
2− ρ

.

Asking when E(X) exists is a little dicey. The trouble is that the integrand xfX(x) is ≥ 0
when x > 0 and is ≤ 0 when x < 0. So strange cancelations can occur depending how
you let the limits of integration tend to ±∞.

Example 19.2. Let X have the Cauchy distribution from Example 18.1, fX(x) = 1
π
· 1

1+x2 .
Then ∫ ∞

−∞
xfX(x) dx =

1

π

∫ ∞
−∞

x

1 + x2
dx.

Since x
1+x2 ∼ 1

x
as x → ∞, a function that is not integrable, this integral is ill-defined. To

see why, note that the definition is actually a limit:∫ ∞
−∞

x

1 + x2
dx = lim

a→−∞
lim
b→∞

∫ b

a

x

1 + x2
dx.

We can evaluate the integral over [a, b]:∫ b

a

x

1 + x2
dx =

1

2
ln(1 + x2)

∣∣∣∣x=b

x=a

=
1

2
ln

(
1 + b2

1 + a2

)
.

Now, we could decide to take −a = b→∞, in which case we would get

lim
a→−∞

1

2
ln

(
1 + a2

1 + a2

)
= 0,

suggesting that the expected value should be 0. On the other hand, in this double limit,
we could have decided instead to let b = −2a→∞, in which case we would get

lim
a→−∞

1

2
ln

(
1 + 4a2

1 + a2

)
= ln 2.

Since the answer depends on how we perform the limit, this improper integral is not
well-defined. The problem is that∫ ∞

−∞

∣∣∣∣ x

1 + x2

∣∣∣∣ dx =

∫ 0

−∞

−x
1 + x2

dx+

∫ ∞
0

x

1 + x2
dx = 2

∫ ∞
0

x

1 + x2
dx

= 2 lim
b→∞

∫ b

0

x

1 + x2
dx
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and this limit is

lim
b→∞

∫ b

0

x

1 + x2
dx = lim

b→∞

1

2
ln(1 + b2) =∞.

So, even though the Cauchy distribution is symmetric, its expected value is of the form
∞−∞ which is not-defined.

This suggests we should look at the absolute value.

Proposition 19.3. LetX be a continuous random variable. The expected value E(X) exists if and
only if the positive integral∫ ∞

−∞
|xfX(x)| dx =

∫ ∞
−∞
|x|fX(x) dx <∞.

Proof. For any a < 0 < b we have∫ b

a

|x|fX(x) dx =

∫ b

0

xfX(x) dx+

∫ 0

a

|x|fX(x) dx.

Hence ∫ ∞
−∞
|x|fX(x) dx = lim

b→∞

∫ b

0

xfX(x) dx+ lim
a→−∞

∫ 0

a

|x|fX(x) dx.

Both of these integrals are increasing positive limits, so they either both exists or the sum
is infinite. Thus, if the integral of |x|fX(x) is finite therefore implies that both limits exist,
and so

E(X) =

∫ ∞
−∞

xfX(x) dx = lim
b→∞

∫ b

0

xfX(x) dx− lim
a→−∞

∫ 0

a

|x|fX(x) dx

is a difference of two finite limits that exist, so it exists. On the other hand, if the full
integral of |x|fX(x) is infinite, then at least one of the two one-sides limits is infinite. If the
limb→∞

∫ b
0
xfX(x) dx = ∞ but lima→−∞

∫ 0

a
|x|fX(x) dx exists, then their difference tends to

∞ so E(X) =∞. If the limb→∞
∫ b

0
xfX(x) dx exists but lima→−∞

∫ 0

a
|x|fX(x) dx = −∞, then

their difference tends to−∞ so E(X) = −∞. If both limits tend to∞, then E(X) =∞−∞
is an indeterminate form, and will take on different values depending how the two limits
are performed, as in Example 19.2. �

Example 19.4. Let X ∼ N(0, t), a normal distribution, with density fX(x) = 1√
2πt
e−x

2/2t.
Following Proposition 19.3, we need to check the positive integral∫ ∞

−∞
|x|fX(x) dx =

1√
2πt

∫ ∞
−∞
|x|e−x2/2t dx.

Breaking this integral up into two pieces,∫ ∞
−∞
|x|e−x2/2t dx =

∫ 0

−∞
|x|e−x2/2t dx+

∫ ∞
0

|x|e−x2/2t dx

=

∫ 0

−∞
(−x)e−x

2/2t dx+

∫ ∞
0

xe−x
2/2t dx.
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In the first integral, we make the change of variables y = −x. Then dx = −dy and so this
integral becomes∫ 0

−∞
(−x)e−x

2/2t dx = −
∫ 0

∞
ye−y

2/2t dy =

∫ ∞
0

ye−y
2/2t dy,

the same as the first integral. Hence∫ ∞
−∞
|x|fX(x) dx =

2√
2πt

∫ ∞
0

xe−x
2/2t dt

2√
2πt
· −te−x2/2t

∣∣∣x=∞

x=0
=

√
2t

π
<∞.

Hence, E(X) exists. We can calculate it using the same calculations above:∫ ∞
−∞

xfX(x) dx =
1√
2πt

∫ 0

−∞
xe−x

2/2t dx+
1√
2πt

∫ ∞
0

xe−x
2/2t dx

= − 1√
2πt

∫ ∞
0

ye−y
2/2t dy +

1√
2πt

∫ ∞
0

xe−x
2/2t dx = 0.

So, ifX has a normalN(0, t) distribution, E(X) = 0. (This is the reason for the 0 inN(0, t).)

Remark 19.5. The phenomenon that we saw in Example 19.4, with the two integrals over
the positive and negative half-lines canceling, is because the normal distribution has the
property that fX(x) = fX(−x). Such distributions are called symmetric. This is the same
condition as the one you saw on Homework 6, problem 7(a): integrating both sides we
find

FX(x) =

∫ x

−∞
fX(t) dt =

∫ x

−∞
fX(−t) dt =

∫ −x
∞

fX(s) (−ds)

=

∫ ∞
−x

fX(s) ds

= 1−
∫ −x
−∞

fX(s) ds = 1− FX(−x).

That is, FX(x)+FX(−x) = 1. (As you showed, this is equivalent to P(a ≤ X ≤ b) = P(−b ≤
X ≤ −a) for all a < b.) In such a case, X distributes half of its mass in (−∞, 0) and the
other half in (0,∞), so it is natural to expect that E(X) = 0. This is true whenever X is
symmetric, provided E(X) exists. As Example 19.2 showed, there are symmetric random
variables that do not have an expectation.

19.1. Properties of Expectation. The expectation on continuous random variables has
the same properties as it does on discrete random variables. The main property (linearity
of E) we will leave until a future lecture, when we discuss joint densities and joint distri-
butions of continuous random variables. But we can prove a few useful properties along
these lines now.

Example 19.6. Let X be a continuous random variable and a ∈ R. Then, as we calculated
in Example 17.4, FaX(x) = FX(x/a). Differentiating, this shows that

faX(x) =
d

dx
FX(x/a) =

1

a
fX(x/a).
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Therefore
E(aX) =

∫ ∞
−∞

xfaX(x) dx =

∫ ∞
−∞

x

a
fX(x/a) dx.

Making the substitution y = x/a (which takes (−∞,∞) to itself) gives dx = ady and so

E(aX) =

∫ ∞
−∞

yfX(y) a dy = aE(X).

Similarly, we can calculate that

FX+a(x) = P(X + a ≤ x) = P(X ≤ x− a) = FX(x− a),

and so differentiating yields fX+a(x) = fX(x− a). Hence

E(X + a) =

∫ ∞
−∞

xfX+a(x) dx =

∫ ∞
−∞

xfX(x− a) dx.

Making the substitution y = x− a (which takes (−∞,∞) to itself) gives dx = dy and so

E(X + a) =

∫ ∞
−∞

(y + a)fX(y) dy =

∫ ∞
−∞

yfX(y) dy + a

∫ ∞
−∞

fX(y) dy = E(X) + a · 1.

Example 19.7. Let X ∼ N(0, t). Then the density of X + a is

fX+a(x) = fX(x− a) =
1√
2πt

e−(x−a)2/2t.

Using the calculations in Examples 19.4 and 19.6, we have E(X + a) = 0 + a. We call this
density N(a, t), a normal law with mean a and variance t. (We’ll explain the variance
part in the next section.)

19.2. Expectations of functions of continuous random variables. We can also compute
expectations of functions of a random variable, just as in the discrete case (provided the
new composed variable has an expectation). Let X have density fX . Let r : R → R be a
differentiable function. Then

E(r(X)) =

∫ ∞
−∞

xfr(X) dx.

Let’s consider the case that r is strictly-increasing, and maps R onto R. Then we have a
formula, Theorem 17.5, for fr(X):

fr(X)(x) = fX(r−1(x)) · (r−1)′(x).

So we have
E(r(X)) =

∫ ∞
−∞

xfX(r−1(x)) · (r−1)′(x) dx.

This is setup perfectly for the substitution (i.e. reverse chain) rule. Set y = r−1(x). Then
dy = (r−1)′(x) dx, and x = r(y), so this last integral therefore becomes

E(r(X)) =

∫ ∞
−∞

r(y)fX(y) dy.

Actually, this last equality holds in full generality (even when r is not onto, or strictly-
increasing).
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Theorem 19.8. Let X be a random variable with density fX , and let r : R → R. If the integral∫∞
−∞ |r(x)|fX(x) dx is finite, then E(r(X)) exists and

E(r(X)) =

∫ ∞
−∞

r(x)fX(x) dx.

One important application of this is calculating variances.

Example 19.9. Let X ∼ N(0, t). Then

E(X2) =

∫ ∞
−∞

x2fX(x) dx =
1√
2πt

∫ ∞
−∞

x2e−x
2/2t dx.

We can do this integration by parts. Set U(x) = x and dV (x) = xe−x
2/2t dx. Then V (x) =

−te−x2/2t, and so∫ ∞
−∞

x2e−x
2/2t dx =

∫ ∞
−∞

UdV = UV |∞−∞ −
∫ ∞
−∞

V dU

= −txe−x2/2t
∣∣∣x=∞

x=−∞
+

∫ ∞
−∞

te−x
2/2t dx.

The boundary terms vanish as x→∞. So, we have

E(X2) =
1√
2πt

∫ ∞
−∞

te−x
2/2t dx = t

∫ ∞
−∞

fX(x) dx = t · 1.

So E(X2) = t. Since E(X) = 0, we also have

Var(X) = E(X2)− E(X)2 = t.

This is the reason we call the distribution N(0, t) – a normal random variable with expec-
tation 0 and variance t.

Example 19.10. Let X be uniform on [a, b]. Then

E(X2) =

∫ ∞
−∞

x2fX(x) dx =

∫ b

a

x2 1

b− a
dx =

1

b− a
1

3
x3

∣∣∣∣x=b

x=a

=
b3 − a3

3(b− a)
=

1

3
(b2 + ab+ a2).

On the other hand,

E(X) =

∫ b

a

x
1

b− a
dx =

1

b− a
1

2
x2

∣∣∣∣x=b

x=a

=
b2 − a2

2(b− a)
=
a+ b

2
.

Hence,

Var(X) =
1

3
(b2 + ab+ a2)−

(
1

2
(a+ b)

)2

=
(b− a)2

12
.

Example 19.11. Let X ∼ exponential(λ). Then

E(X2) =

∫ ∞
0

x2 · λe−λx dx



88

The integral can, once again, be done by parts. Letting U = x2 and dV = λe−λxdx, we
have V (x) = −e−λx and so

E(X2) =

∫ ∞
0

UdV = UV |∞0 −
∫ ∞

0

V dU = −x2e−λx
∣∣x=∞
x=0

+

∫ ∞
0

e−λx · 2x dx.

The boundary terms vanish, and so we have

E(X2) = 2

∫ ∞
0

xe−λx dx =
2

λ

∫ ∞
0

x · λe−λx dx =
2

λ
E(X).

We already calculated that E(X) = 1
λ

, so E(X2) = 2
λ2 . Hence

Var(X) = E(X2)− E(X)2 =
2

λ2
−
(

1

λ

)2

=
1

λ2
.
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20. LECTURE 20: NOVEMBER 10, 2010

20.1. Joint Distributions. As we saw in the discrete setting, if we have two random vari-
ables X, Y we could completely describe their distribution (and relationship with each
other) by knowing the numbers P(X = x, Y = y) for all states x, y that they can take on.
In the continuous case, these numbers are typically 0. Instead, we use the same trick,
looking at an inequality instead of equality.

Definition 20.1. Let X, Y be any two R-valued random variables. The function

FX,Y (x, y) = P(X ≤ x, Y ≤ y)

is called the joint cumulative distribution function of the pair.

Notice that

FX,Y (x, y) = P(X ≤ x, Y ≤ y) ≤ P(X ≤ x) = FX(x)

≤ P(Y ≤ y) = FY (y)

so FX,Y (x, y) ≤ min{FX(x), FY (y)}. In particular, this means that limx→−∞ FX,Y (x, y) = 0
for any y, and limy→−∞ FX,Y (x, y) = 0 for any x.

Example 20.2. Suppose X, Y are uniform random variables on [0, 1], and in fact X = Y . What
does FX,Y look like?

First, suppose x < y. Then P(X ≤ x, Y ≤ y) = P(X ≤ x,X ≤ y). The event {X ≤
x} ∩ {X ≤ y} is the same as the even {X ≤ min{x, y}}. Thus,

FX,Y (x, y) = P(X ≤ min{x, y}) =


0, min{x, y} ≤ 0

min{x, y}, 0 ≤ min{x, y} ≤ 1

1, min{x, y} ≥ 1

.

Even in this simple case, the function FX,Y has quite a complicated graph. The function

is 0 except in the first quadrant. It is equal to 1 in the region where x, y ≥ 1. In the
intervening ”L”-shaped region, it equals x in the top part (where 0 ≤ x ≤ 1 and y ≥ x)
and equals y in the bottom part (where 0 ≤ y ≤ 1 and x ≥ y.
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In general, ifX = Y , the joint distribution function FX,Y = FX,X is actually an undesirable
object. In the discrete case, where we look instead directly at the distribution function
µX,Y (x, y) = P(X = x, Y = y), when X = Y we would have µX,X(x, y) = 0 unless x = y:
i.e. the only non-zero values are on the diagonal. In the continuous case, the analogue of
the distribution function µX is the probability density function fX ; so to understand things
better, we should figure out what a joint density looks like.

20.2. Joint Density. Following what we did in the 1-variable case, let’s consider the spe-
cial case that the joint distribution function FX,Y is actually a smooth function. Since there
are two variables now, we’re going to want to differentiate in each variable, which means
two derivatives – so we consider the case that FX,Y is C2(R2). Consider the function

fX,Y (x, y) =
∂

∂x

∂

∂y
FX,Y (x, y).

This is called the joint density of X and Y . We can recover the joint cumulative distribu-
tion from it by integrating. Since we know limx→−∞ FX,Y (x, y) = limy→−∞ FX,Y (x, y) = 0,
the fundamental theorem of calculus tells us that∫ a

−∞
fX,Y (x, y) dx =

∫ a

−∞

∂

∂x

∂

∂y
FX,Y (x, y) dx =

∂

∂y
FX,Y (a, y)− ∂

∂y
FX,Y (−∞, y)

=
∂

∂y
FX,Y (a, y).

So, integrating again,∫ b

−∞

∫ a

−∞
fX,Y (x, y) dx dy =

∫ b

−∞

∂

∂y
FX,Y (a, y) dy = FX,Y (a, b)− FX,Y (a,−∞)

= FX,Y (a, b).

So the joint density fX,Y contains the same information as FX,Y . But it allows us to calcu-
late many things much more easily.

Example 20.3. Let X and Y be continuous random variables with joint cumulative distribution
function FX,Y (x, y) = P(X ≤ x, Y ≤ y). Consider the rectangle B = [a, b] × [c, d]; what is
P((X, Y ) ∈ B)?

We want to calculate P(a ≤ X ≤ b, c ≤ Y ≤ d). Well,

{X ∈ [a, b], Y ∈ [c, d]} = {X ≤ b, Y ∈ [c, d]} ∩ {X < a, Y ∈ [c, d]}c.
Therefore

P((X, Y ) ∈ B) = P(X ≤ b, Y ∈ [c, d])− P(X < a, Y ∈ [c, d]).

We can then further break things up:

{X ≤ b, Y ∈ [c, d]} = {X ≤ b, Y ≤ d} ∩ {X ≤ b, Y < c}c,
{X < a, Y ∈ [c, d]} = {X < a, Y ≤ d} ∩ {X < a, Y < c}c.

So

P(X ≤ b, Y ∈ [c, d]) = P(X ≤ b, Y ≤ d)− P(X ≤ b, Y < c)

P(X < a, Y ∈ [c, d]) = P(X < a, Y ≤ d)− P(X < a, Y < c).
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Now, since X, Y are continuous, all the inequalities < and ≤ are interchangeable. So
putting everything together, we find that

P((X, Y ) ∈ B) = [FX,Y (b, d)− FX,Y (b, c)]− [FX,Y (a, d)− FX,Y (a, c)] .

This looks very complicated. But lets look at this through the filter of the fundamental
theorem of calculus:

FX,Y (b, d)− FX,Y (b, c) =

∫ d

c

∂

∂y
FX,Y (b, y) dy

FX,Y (a, d)− FX,Y (a, c) =

∫ d

c

∂

∂y
FX,Y (a, y) dy.

So we have

P((X, Y ) ∈ B) =

∫ d

c

∂

∂y
FX,Y (b, y) dy −

∫ d

c

∂

∂y
FX,Y (a, y) dy

=

∫ d

c

∂

∂y
[FX,Y (b, y)− FX,Y (a, y)] dy.

Now, we do it again:

FX,Y (b, y)− FX,Y (a, y) =

∫ b

a

∂

∂x
FX,Y (x, y) dx.

So finally, we come to the equation

P((X, Y ) ∈ B) =

∫ d

c

∂

∂y

[∫ b

a

∂

∂x
FX,Y dx

]
dy

=

∫ d

c

∫ b

a

∂

∂y

∂

∂x
FX,Y (x, y) dy dx

=

∫
B

fX,Y (x, y) dx dy.

Example 20.3 shows us that we can calculate the probability that the random vector (X, Y )
is in a rectangle by integrating the joint density fX,Y over that rectangle. The thing is, any
(reasonable) two-dimensional solid can be approximated by a collection of very small
rectangles (this is the whole point of double integrals). So we actually have the following
theorem.

Theorem 20.4. Let X, Y be random variables with a joint density fX,Y , and let A be a region in
R2. Then

P((X, Y ) ∈ A) =

∫∫
A

fX,Y (x, y) dxdy.

From Theorem 20.4, we see that the joint density must be ≥ 0 (since probabilities are
always ≥ 0), and it must be that∫∫

R2

fX,Y (x, y) dxdy = 1.

As with single random variable, the joint density is a very efficient way to record the
information contained in the joint distribution.
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Example 20.5. Suppose that X, Y have joint density

fX,Y (x, y) =

{
1
2
, 1 ≤ x ≤ 2 & − 1 ≤ y ≤ 1

0, otherwise
.

This is a joint density function since fX,Y ≥ 0 and∫
R2

fX,Y (x, y) dxdy =

∫ 1

−1

∫ 2

1

1

2
dxdy =

1

2
· 2 · 1 = 1.

Let D be the disk of radius 2/3 centered at (2, 0). On the left-half of D, fX,Y = 1
2
; on the

right half, fX,Y = 0. Thus

P((X, Y ) ∈ D) =

∫
D

fX,Y (x, y) dxdy =
1

2
· (half the area of D) =

1

2
· 1
2
π

(
2

3

)2

=
π

9
≈ 34.9%.

Example 20.6. The joint distribution of Example 20.2 is not a differentiable function – it
has sharp ridges along (some of) the lines in the figure in that example. But corners are
no problem for the existence of densities in one-variable, so let’s differentiate anyhow. At
all points not along the lines x = y, x = 0, x = 1, y = 0, or y = 1, the joint distribution
function FX,Y is a linear function: its values are 0, 1, x, or y, depending on what region.
But ∂2

∂x∂y
0 = ∂2

∂x∂y
1 = ∂2

∂x∂y
x = ∂2

∂x∂y
y = 0. Hence, if the pair (X, Y ) = (X,X) had a density

fX,X , that density would have to be 0 except on those lines. Since the area of those lines is
0, however,

∫∫
R2 fX,Y (x, y) dxdy = 0, not 1. In other words, the pair (X,X) does not have

a joint density.

Remark 20.7. Example 20.6 shows that the existence of a joint density is harder to come by
than just a one-variable density. For a single random variable X , the main obstacle to the
existence of a density fX is any discrete values for X : i.e. if P(X = x) > 0 for any one
value x. But even if both X and Y have densities (no discrete part), the pair (X, Y ) can
fail to have a density. The obstacle here is, as in Example 20.6, the set of possible values
for the pair (X, Y ) has to have positive area on the plane. For any random variable X , the
pair (X,X) has values lying in the line y = x which has 0 area; hence, there can be no
joint density function.

20.3. Independence. Remember, from the beginning of the quarter, that we call two
events A,B independent if

P(A ∩B) = P(A)P(B).

We translated this into a condition for independence of discrete random variables by in-
sisting that, for any values x, y in the state spaces, the events {X = x} and {Y = y} are
independent; i.e.

P(X = x, Y = y) = P(X = x)P(Y = y).

Now, if X, Y are continuous random variables, then this equation is always satisfies, since
both sides are always 0. This is not very informative. So to properly define independence
for continuous random variables, we need to go back to basics and look at some non-
trivial events.
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Definition 20.8. Let X, Y be continuous random variables. Say that X, Y are independent if
the events {X ≤ x} and {Y ≤ y} are independent for any values x, y in the state spaces. In other
words, they are independent if

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y).

In terms of cumulative distribution functions,

FX,Y (x, y) = FX(x)FY (y).

Differentiating this ∂2

∂x∂y
, the third and most useful way to state independence is

fX,Y (x, y) = fX(x)fY (y).

Example 20.9. Suppose thatX is uniform on [1, 2] and Y is uniform on [−1, 1]. This means
that

fX(x) =

{
1, 1 ≤ x ≤ 2

0, otherwise
fY (y) =

{
1
2
, −1 ≤ y ≤ 1

0, otherwise

If X, Y are independent, then

fX,Y (x, y) = fX(x)fY (y) =

{
1
2
, 1 ≤ x ≤ 2 & − 1 ≤ y ≤ 1

0, otherwise
.

This is exactly the joint density we saw in Example 20.5, so in fact that was an example of
a joint density of two independent random variables.

20.4. Sums of Independent Random Variables. In the discrete case, we had a nice con-
crete formula for determining the distribution of the sum of two random variables:

P(X + Y = k) =
∑
x

P(X = x)P(Y = k − x).

Since both sides are 0 in the continuous case, this doesn’t make much sense for continuous
random variables. But if we write things in terms of probability densities, there is a direct
analogue.

Theorem 20.10. Let X, Y be continuous random variables, with densities fX and fY . If X and
Y are independent, then the density of X + Y is given by

fX+Y (t) =

∫ ∞
−∞

fX(x)fY (t− x) dx.

Proof. By definition,

fX+Y (t) =
d

dt
FX+Y (t) =

d

dt
P(X + Y ≤ t).

Now, the event {X + Y ≤ t} can be written as an event in terms of the random vector
(X, Y ):

{X + Y ≤ t} = {(X, Y ) ∈ H} where H = {(x, y) : x+ y ≤ t}.
Hence, using Theorem 20.4,

P(X + Y ≤ t) = P((X, Y ) ∈ H) =

∫∫
H

fX,Y (x, y) dxdy.
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The regionH is a slanted half-plane. We can do the double integral as an iterated-integral:
for fixed x, we integrate y from −∞ up to t− x, so

P(X + Y ≤ t) =

∫ ∞
−∞

(∫ t−x

−∞
fX,Y (x, y)dy

)
dx.

If we now differentiate both sides with respect to t, we find

fX+Y (t) =
d

dt
P(X + Y ≤ t) =

d

dt

∫ ∞
−∞

(∫ t−x

−∞
fX,Y (x, y)dy

)
dx

=

∫ ∞
−∞

(
d

dt

∫ t−x

−∞
fX,Y (x, y)dy

)
dx

=

∫ ∞
−∞

fX,Y (x, t− x) dx.

(The final equality is just the Fundamental Theorem of Calculus.) So far, everything we
have written holds true for any continuous random variables. But we know that X, Y are
independent, which means that fX,Y (x, t−x) = fX(x)fY (t−x). This proves the result. �

Example 20.11. SupposeX and Y are uniform on [0, 1]. What is the probability thatX+Y ≤ 1?

We will calculate the density of X + Y using Theorem 20.10.

fX+Y (t) =

∫ ∞
−∞

fX(x)fY (t− x) dx =

∫ 1

0

fY (t− x) dx

since fX(x) = 1 when 0 ≤ x ≤ 1 and fX = 0 outside the unit interval. Now we do a
change of variables: u = t− x, so du = −dx. When x = 0, u = t− x = t and when x = 1,
u = t− x = t− 1. So

fX+Y (t) =

∫ t−1

t

fY (u) (−du) =

∫ t

t−1

fY (u) du.

Now, fY (u) = 1 if u ∈ [0, 1] and is 0 otherwise. So to calculate this integral, we have to
divide into cases depending on the value of t.

• If t ≤ 0, then t− 1 ≤ 0, and so fY (u) = 0 on [t− 1, t]. So in this case, fX+Y (t) = 0.
• If 0 ≤ t ≤ 1, then t − 1 ≤ 0, and so fY (u) = 0 for u ∈ [t − 1, 0] and fY (u) = 1 for
u ∈ [0, t]; hence

fX+Y (t) =

∫ t

0

du = t

for t in this range.
• If 1 ≤ t ≤ 2, then t− 1 ∈ [0, 1] but t ≥ 1 so fY (u) = 1 for u ∈ [t− 1, 1] and fY (u) = 0

for u ∈ [1, t]; hence

fX+Y (t) =

∫ 1

t−1

du = 1− (t− 1) = 2− t

for t in this range.
• If t ≥ 2 then t−1 ≥ 1 and t ≥ 1, so fY (u) = 0 for all u ∈ [t−1, t], and so fX+Y (t) = 0.
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FIGURE 3. The graph of the density fX+Y when X, Y are independent uni-
form [0, 1] random variables.

Altogether, then, fX+Y is a tent-function:
To answer the question at hand, we must evaluate

P(X + Y ≤ 1) =

∫ 1

−∞
fX+Y (t) dt =

∫ 1

0

t dt =
1

2
,

as you might expect. On the other hand,

P(X + Y ≤ 1/2) =

∫ 1/2

0

fX+Y (t) dt =

∫ 1/2

0

t dt =
1

8
,

which might seem small; similarly,

P(X + Y ≤ 3/2) =

∫ 3/2

0

fX+Y (t) dt =

∫ 1

0

t dt+

∫ 3/2

1

(2− t) dt =
1

2
+

(
2t− t2

2

∣∣∣∣t=3/2

t=1

=
7

8
.

Example 20.12. We can use similar techniques to answer related questions. For example,
if X and Y are independent, then how can we calculate the probability that X − Y ≤ a?
One approach would be to define Z = −Y , and note that

fX,Z(x, z) = fX,−Y (x, z) = fX,Y (x,−z) = fX(x)fY (−z) = fX(x)f−Y (z) = fX(x)fZ(z).

In other words, X,−Z are also independent. So we can use Theorem 20.10:

fX−Y (t) = fX+Z(t) =

∫ ∞
−∞

fX(x)fZ(t− x) dx =

∫ ∞
−∞

fX(x)fY (−(t− x)) dx

=

∫ ∞
−∞

fX(x)fY (x− t) dx.

If we know fX and fY , we can (in principle) calculate this integral, and therefore we have
the density of X−Y , which we can use to answer all probabilistic questions about X−Y .
For example, if (as in Example 20.11) X and Y are both uniform on [0, 1], an analogous
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analysis here shows that we get another tent functions:

fX−Y (t) =


0, t ≤ −1 or t ≥ 1

1 + t, −1 ≤ t ≤ 0

1− t, 0 ≤ t ≤ 1

So, for example, P(X − Y ∈ [−0.1, 0.1]) can be calculated by integrating this function:

P(X − Y ∈ [−0.1, 0.1]) =

∫ 0.1

−0.1

fX−Y (t) dt =

∫ 0

−0.1

(1 + t) dt+

∫ 0.1

0

(1− t) dt = 0.19.
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21. LECTURE 21: NOVEMBER 12, 2010

21.1. Adding independent normal random variables.

Example 21.1. Suppose X ∼ N(0, 1) and Y ∼ N(0, 1). If X, Y are independent, we have

fX+Y (u) =

∫ ∞
−∞

fX(x)fY (u− x) dx =

∫ ∞
−∞

1√
2π
e−x

2/2 1√
2π
e−(u−x)2/2 dx

=
1

2π

∫ ∞
−∞

e−
1
2

(x2+(u−x)2) dx.

We can simplify the quadratic polynomial in the exponent:

x2 + (u− x)2 = x2 + x2 − 2ux+ u2 = 2x2 − 2ux+ u2.

There is a standard trick here: since we are integrating against x, we will complete the
square with respect to x:

2x2 − 2ux+ u2 = 2(x2 − ux) + u2 = 2(x2 − ux+ u2/4− u2/4) + u2 = 2(x− u/2)2 − u2/2.

Hence,

fX+Y (u) =
1

2π

∫ ∞
−∞

e−
1
2

(2(x−u/2)2−u2/2) dx =
1

2π

∫ ∞
−∞

e−(x−u/2)2

e−u
2/4 dx.

Now, we can factor out the e−u2/4, since it is constant with respect to x:

fX+Y (u) = e−u
2/4 · 1

2π

∫ ∞
−∞

e−(x−u/2)2

dx.

Now, in the integral, we make the change of variables y = x− u/2. Then dy = dx, and the
interval of integration (−∞,∞) does not change. Thus

fX+Y (u) = e−u
2/4 · 1

2π

∫ ∞
−∞

e−y
2

dy.

We can actually evaluate this integral, but there is no need: the integral 1
2π

∫∞
−∞ e

−y2
dy it is

just some constant c, so we know that

fX+Y (u) = ce−u
2/4.

Since this is a probability density, we know that c is the unique constant which makes∫∞
−∞ fX+Y (u) du = 1. We recognize that the function itself is Gaussian: it has the form
ce−u

2/2t where t = 2; i.e. this is a normal N(0, 2) density, which means the constant must
equal 1√

4π
.

This is a remarkable fact: the sum of two independent normal random variables is a
normal random variable! In fact, more detailed calculations would have shown that if
X ∼ N(0, t) and Y ∼ N(0, s), and if X, Y are independent, then X + Y ∼ N(0, t+ s).
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21.2. Marginal Densities. The joint cumulative distribution function FX,Y of a pair of
random variables contains all the probabilistic information there is about X, Y . In partic-
ular, we must be able to recover the distributions of X and Y from FX,Y . In fact, this is
quite easy, since

FX(x) = P(X ≤ x) = P(X ≤ x, Y <∞) = lim
y→∞

FX,Y (x, y).

Similarly,
FY (y) = P(Y ≤ y) = P(X <∞, Y ≤ y) = lim

x→∞
FX,Y (x, y).

Now, if X, Y have a joint density fX,Y , then

FX,Y (x, y) =

∫ y

−∞

∫ x

−∞
fX,Y (u, v) dudv.

Hence

FX(a) = lim
y→∞

∫ y

−∞

∫ x

−∞
fX,Y (u, v) dudv =

∫ ∞
−∞

∫ x

−∞
fX,Y (u, v) dudv.

If we differentiate with respect to x, we get an expression for the density of X :

fX(x) =
d

dx

∫ ∞
−∞

∫ x

−∞
fX,Y (u, v) dudv =

∫ ∞
−∞

fX,Y (x, v) dv.

We can similarly compute that

fY (y) =

∫ ∞
−∞

fX,Y (u, y) du.

These are the marginal densities. They are akin to the marginal distribution functions in
the discrete setting that we discussed in Lecture 14: they are the row and column “sums”
(actually integrals here).

Example 21.2. Suppose that the random vector (X, Y ) is uniformly distributed on the unit
ball:

fX,Y (x, y) =

{
1
π
, x2 + y2 ≤ 1

0, x2 + y2 > 1

Let’s find the densities of X and Y . We must compute the marginals.

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy, fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx.

For fixed x, the function fX,Y (x, y) is only non-zero when y2 ≤ 1 − x2, which means
−
√

1− x2 ≤ y ≤
√

1− x2. This set is empty unless |x| ≤ 1, so fX(x) = 0 if |x| > 1. For
|x| ≤ 1, the integral becomes∫ ∞

−∞
fX,Y (x, y) dy =

∫ √1−x2

−
√

1−x2

1

π
dy =

2

π

√
1− x2.

Thus, we have found that

fX(x) =

{
2
π

√
1− x2, |x| ≤ 1

0, |x| > 1
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This is called the semicircle law. (The graph is not strictly a semicircle, but rather a
semi-ellipse, since the factor 2

π
is requires to normalize the integral.) As for fY , we could

calculate it similarly, but we can also just note that, in this example,

fX,Y (x, y) = fX,Y (y, x) = fY,X(x, y).

That is, the two functions fX,Y and fY,X are equal. When this happens, it means that X
and Y must have the same distribution, so fX = fY .

Example 21.3. Suppose X, Y are independent random variables, with joint density fX,Y .
In this case, we know that fX,Y (x, y) = fX(x)fY (y), so it is easier to pick out the separate
densities of X, Y . Let’s see what happens when we compute the marginals:∫ ∞

−∞
fX,Y (x, y) dy =

∫ ∞
−∞

fX(x)fY (y) dy = fX(x)

∫ ∞
−∞

fY (y) dy = fX(x) · 1,

as required.

We can use marginals to give an easy way to check whether a given function f(x, y) is
the joint density of a pair of independent random variables. (This is the analogue of
Proposition 14.6 for discrete distributions.)

Proposition 21.4. Suppose fX,Y is a non-negative function of two variables with
∫∫

R2 f(x, y) dxdy =
1. Suppose there are one-variable functions g, h such that f(x, y) = g(x)h(y). Then fX,Y is the
joint density of a pair of random variables that are independent, and there is a constant c > 0 so
that fX(x) = cg(x) and fY (y) = 1

c
h(y).

Proof. We simply compute the marginals of f :

fX(x) =

∫ ∞
−∞

fX,Y (x, y) dy =

∫ ∞
−∞

g(x)h(y) dy = g(x) ·
∫ ∞
−∞

h(y) dy = g(x) · c

where c =
∫
R h(y) dy. Similarly,

gY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ ∞
−∞

g(x)h(y) dx = h(y) ·
∫ ∞
−∞

g(x) dx = h(y) · c′

where c′ =
∫
R g(x) dx. Finally, we just note that

1 =

∫
R2

fX,Y (x, y) dxdy =

∫ ∞
−∞

∫ ∞
−∞

g(x)h(y) dxdy =

(∫ ∞
−∞

g(x) dx

)(∫ ∞
−∞

h(y) dy

)
= cc′,

so c′ = 1
c

as claimed. Thus, fX,Y (x, y) = g(x)h(y) = 1
c
fX(x) · xfY (y) = fX(x)fY (y), so X, Y

are independent. �

Example 21.5. Suppose that fX,Y (x, y) = 1
π
e−(x2+y2). Notice that

fX,Y (x, y) =
1

π
e−x

2 · e−y2

is a product of two one-variable functions. Thus, X, Y are independent. Moreover, their
distributions are both (constants) times e−x2 . We can even tell quickly that, since both
distributions must be the same, the constant must equally distribute the 1

π
, so fX(x) =

1√
π
e−x

2
= fY (x).
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Example 21.6. Suppose that

fX,Y (x, y) =

{
e−x, x > 0 & 0 < y < 1

0, otherwise

Are X, Y independent?

The domain where fX,Y 6= 0 is a rectangle, so there is a change fX,Y is a product. Indeed,
we see that fX,Y (x, y) = g(x)h(y), where

g(x) =

{
e−x, x > 0

0, x ≤ 0
h(y) =

{
1, 0 < y < 1

0, otherwise

So fX,Y is the joint density of independent random variables, where X is exponential(1)
and Y is uniform on [0, 1].

21.3. Conditional Densities. If X, Y are discrete random variables then the event P(Y =
y) > 0 for each y in the state space of Y . So it makes sense to condition on this event:

P(X ∈ [a, b]|Y = y) =
P(X ∈ [a, b], Y = y)

P(Y = y)
.

But when X, Y are continuous random variables, the denominator is 0. However, the
numerator is also 0, so P(X ∈ [a, b]|Y = y) has a shot of making sense (since it is a 0

0
indeterminate form). To see how we should make sense of it, let’s look at a conditional
probability that does make sense: suppose that fY is not 0 on the interval [y, y + ∆y] (so
that P(Y ∈ [y, y + ∆y]) > 0). Then

P(X ∈ [a, b]|Y ∈ [y, y + ∆y]) =
P(X ∈ [a, b], Y ∈ [y, y + ∆y])

P(Y ∈ [y, y + ∆y])
.

The numerator is

P(X ∈ [a, b], Y ∈ [y, y + ∆y]) =

∫ y+∆y

y

∫ b

a

fX,Y (x, v) dxdv.

The function v 7→
∫ b
a
fX,Y (x, v) dx is continuous, and so for sufficiently small ∆y, we have∫ b

a

fX,Y (x, v) dx ≈
∫ b

a

fX,Y (x, y) dx, y ≤ v ≤ y + ∆y.

So when we integrate, the numerator is close to

P(X ∈ [a, b], Y ∈ [y, y + ∆y]) ≈
∫ y+∆y

y

∫ b

a

fX,Y (x, y) dxdv =

∫ b

a

fX,Y (x, y) dx ·∆y.

Similarly, the denominator is close to

P(Y ∈ [y, y + ∆y]) =

∫ y+∆y

y

fY (v) dv ≈ fY (y) ·∆y.

So

P(X ∈ [a, b]|Y ∈ [y, y + ∆y]) ≈
∫ b
a
fX,Y (x, y) dx ·∆y
fY (y) ·∆y

.
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Both the numerator and denominator tend to 0 as ∆y → 0, but they cancel and we see
that

lim
∆y→0

P(X ∈ [a, b]|Y ∈ [y, y + ∆y]) =

∫ b
a
fX,Y (x, y) dx

fY (y)
=

∫ b

a

fX,Y (x, y)

fY (y)
dx.

So this motivates our definition of conditional density.

Definition 21.7. Let X, Y be jointly continuous random variables, with joint density fX,Y . The
conditional density of X, Y given that Y = y is the function

fX|Y (x, y) =
fX,Y (x, y)

fY (y)
=

fX,Y (x, y)∫
R f(x, y) dx

.

This function is defined for all (x, y) where fY (y) > 0. (If fY (y) = 0, we just set fX|Y (x, y) = 0.)

The meaning of the conditional density is made clear from the derivation we gave for
its expression: for a < b and y,

P(X ∈ [a, b]|Y = y) =

∫ b

a

fX|Y (x, y) dx.

That is: even though the event {Y = y} has probability 0, conditioning on this event
makes sense provided the density of probabilities near this point is positive. Recall: if
X, Y are discrete, the conditional distribution was

µX|Y (x, y) =
P(X = x, Y = y)

P(Y = y)
=
µX,Y (x, y)

µY (y)
.

The conditional density is the infinitesimal form of this for continuous random variables.

Example 21.8. As in Example 21.2, let (X, Y ) be a uniform random vector in the unit disk.
Let’s calculate the conditional density fX|Y (x, y). As calculated above,

fY (y) =

{
2
π

√
1− y2, |y| ≤ 1

0, |y| > 1

So first, automatically, when |y| > 1 we must have fX|Y (x, y) = 0. When |y| ≤ 1, we have

fX|Y (x, y) =
fX,Y (x, y)

fY (y)
=

{
1/π

2/π
√

1−y2
, x2 + y2 ≤ 1

0, x2 + y2 > 1

To be clear: we are thinking of y as fixed here, so we should write this as:

fX|Y (x, y) =

{
1

2
√

1−y2
, |x| ≤

√
1− y2

0, |x| >
√

1− y2

when |y| ≤ 1, and fX|Y (x, y) = 0 when |y| > 1. Hence, the conditional distribution of X
given that Y = y is uniform on the interval [−

√
1− y2,

√
1− y2].

Remark 21.9. Comparing Examples 21.2 and 21.8, we see the following properties of the
uniform distribution on the unit disk.
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• If we choose many samples of (X, Y ) uniform on the disk, and then look at the
distribution of their first coordinate (i.e. we project all the points down onto the
x-axis), the resulting distribution of points will not be uniform: the histogram has
a semicircular shape. This is because there are more points along each vertical line
to project near the centre of the disk than near the outside.
• On the other hand, if we look at a narrow horizontal strip at height y and look

at the x-coordinates of points along this line, stretching from (−
√

1− y2, y) to
(
√

1− y2, y), these points are distributed uniformly.

Example 21.10. Let X be uniform on [0, 1]. Let Y be uniform on [0, X]. (That is: once we pick a
random number X = x in [0, 1], we pick a uniform random number in [0, x].) What is the joint
density of (X, Y )?

First, as stated, we have the density of X and the conditional density of Y given X :

fX(x) =

{
1, 0 < x < 1

0, otherwise

fY |X(y, x) =

{
1
x
, 0 < y < x

0, otherwise

Now, by definition

fY |X(y, x) =
fY,X(y, x)

fX(x)

and so we can recover the joint density by multiplying:

fY,X(y, x) = fY |X(y, x)fX(x) =

{
1
x
, 0 < y < x < 1

0, otherwise

This density is 0 except on the lower-triangular part of the unit square. Note that fY,X(y, x) =
fX,Y (x, y), so we have the desired joint density. Just as a sanity check, let’s verify it actu-
ally is a probability density. It is, of course, ≥ 0, and∫∫

R2

fX,Y (x, y) dxdy =

∫ 1

0

(∫ x

0

1

x
dy

)
dx =

∫ 1

0

1

x
(x− 0) dx = 1.

Now, knowing the joint distribution of X, Y , we know everything. For example, we can
calculate the unconditional distribution of Y . This is the marginal:

fY (y) =

∫ ∞
−∞

fX,Y (x, y) dx =

∫ 1

y

1

x
dx = lnx|x=1

x=y = ln 1− ln y = ln
1

y

when 0 < y ≤ 1, and it’s 0 outside the unit interval. This density gets very large as y ↓ 0.
Again, as a sanity check, let’s verify that it integrates to 1:∫ ∞

−∞
fY (y) dy =

∫ 1

0

− ln y dy = − (y ln y − y|y=1
y=0 = 1,

where we have used the fact that limy→0+ y ln y = 0 (which can be verified, for example,
with l’Hôpital’s rule). So Y is most definitely not uniform; it is much more likely to be
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close to 0 than close to 1. This makes sense: we choose X first, and then choose Y ≤ X ,
so Y has fewer chances to be large than to be small.

21.4. Back to Expectation. We can use joint densities to study expectations of sums of
jointly-continuous random variables.

Theorem 21.11. LetX, Y be random variables with a joint density function fX,Y . If E(|X|) <∞
and E(|Y |) <∞, then X + Y has an expectation, and

E(X + Y ) = E(X) + E(Y ).

Remark 21.12. Actually, this theorem holds for any random variables, whether they have
a joint density or not. We have already seen this in the discrete setting. In Example 20.6,
we saw that the pair (X,X) never has a joint density; however, E(X + X) = E(2X) =
2E(X) = E(X) + E(X) from Example 19.6. We only have the tools to prove this theorem
in the jointly-continuous case, however; to prove it in general would require the more
sophisticated machinery of measure theory. (On the other hand, we could also prove
it by approximating with discrete distributions and using the theorem from the discrete
world; this would work, but would be quite messy to sort out all the details.)

Proof. By definition

E(X + Y ) =

∫ ∞
−∞

tfX+Y (t) dt.

We are not assuming X, Y are independent, so we cannot express fX+Y (t) as in Theorem
20.10. We can, however, follow some of the proof there. In general, we have

FX+Y (t) = P(X + Y ≤ t) = P((X, Y ) ∈ Ht)

where Ht = {(x, y) : x+ y ≤ t}. So by the definition of the joint density fX,Y ,

FX+Y (t) =

∫∫
Ht

fX,Y (x, y) dxdy.

We can evaluate this integral as an iterated integral. The half-plane Ht is the set of points
below-and-to-the-left of the line y = t− x, so

FX+Y (t) =

∫ ∞
−∞

(∫ t−x

−∞
fX,Y (x, y) dy

)
dx.

Differentiating with respect to t gives us

fX+Y (t) =

∫ ∞
−∞

(
d

dt

∫ t−x

−∞
fX,Y (x, y) dy

)
dx =

∫ ∞
−∞

fX,Y (x, t− x) dx.

This is almost the formula from Theorem 20.10 for the density of a sum of independent
random variables; but this formula actually holds in general. (Independence would give
us the one final step that fX,Y (x, t− x) = fX(x)fY (t− x), which is not true in general.)

Combining this with the definition of expectation gives us

E(X + Y ) =

∫ ∞
−∞

t

(∫ ∞
−∞

fX,Y (x, t− x) dx

)
dt.
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Now, we reverse the order of integration. (This is not always legal to do when evaluating
improper integrals; but the assumptions that E(|X|) =

∫∞
−∞ xfX(x) dx < ∞ and E(|Y |) =∫∞

−∞ yfY (y) dy <∞ actually make it legal. We don’t work out the details of this application
of Fubini’s theorem here.) So

E(X + Y ) =

∫ ∞
−∞

(∫ ∞
−∞

tfX,Y (x, t− x) dt

)
dx.

Now we do something funny: we write t = t− x+ x. The inside integral then becomes∫ ∞
−∞

(t− x+ x)fX,Y (x, t− x) dt =

∫ ∞
−∞

(t− x)fX,Y (x, t− x) dt+

∫ ∞
−∞

xfX,Y (x, t− x) dt.

We now make the change of variables u = t − x in both integrals. This does not change
the domain of integration, and du = dt, so we get∫ ∞

−∞
ufX,Y (x, u) du+ x

∫ ∞
−∞

fX,Y (x, u) du.

Plugging this back into the double integral for E(X + Y ) we get

E(X + Y ) =

∫ ∞
−∞

(∫ ∞
−∞

ufX,Y (x, u) du

)
dx+

∫ ∞
−∞

(
x

∫ ∞
−∞

fX,Y (x, u) du

)
dx.

Once more, we reverse the order of integration, in the first integral only, to get

E(X + Y ) =

∫ ∞
−∞

u

(∫ ∞
−∞

fX,Y (x, u) dx

)
du+

∫ ∞
−∞

x

(∫ ∞
−∞

fX,Y (x, u) du

)
dx.

We recognize the two inside integrals as the marginal densities:∫ ∞
−∞

fX,Y (x, u) dx = fY (u)∫ ∞
−∞

fX,Y (x, u) du = fX(x).

So finally we have

E(X + Y ) =

∫ ∞
−∞

ufY (u) du+

∫ ∞
−∞

xfX(x) dx = E(X) + E(Y ).

�
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22. LECTURE 22: NOVEMBER 17, 2010

22.1. Probability vs. Expectation. Let A be a subset of the real numbers R. Remember
the function

1A(y) =

{
1, y ∈ A
0, y /∈ A

Let X be a random variable (say with a density fX). Then consider the random variable
1A(X).

E(1A(X)) =

∫ ∞
−∞

1A(x)fX(x) dx =

∫
A

fX(x) dx = P(X ∈ A).

We saw this relation in the discrete world, too. So we can use this to translate between
expectations and probability. In particular,

E(1(−∞,x](X)) = P(X ∈ (−∞, x]) = P(X ≤ x) = FX(x).

So the cumulative distribution function FX that we’ve been working with can be ex-
pressed as an (x-dependent) expectation. As we’ve seen, FX (and its ”derivative” fX)
contain all the information about the distribution of X .

We could consider lots of other x-dependent expectations of a random variable, and see
what kind of information they contain.

Definition 22.1. Let X be a random variable. The moment-generating function MX of X is
the function

MX(t) = E(etX).

Note: this function may be infinite for some t, or may not exist at all for some t, depending on the
distribution of X .

Example 22.2. Let X be uniform on [0, 1]. Then

MX(t) = E(etX) =

∫ 1

0

etx dx =
1

t
etx
∣∣∣∣x=1

x=0

=
et − 1

t
.

This function is well-defined and finite everywhere, except possibly at t = 0 where the
formula doesn’t make sense. But actually,

lim
t→0

et − 1

t
=

d

dt
et
∣∣∣∣
t=0

= 1

and so we can make sense of the formula even there. And actually, this matches up the
value of the function:

MX(0) = E(e0X) = E(1) = 1.

In fact, we see from this that MX(0) = 1 for all random variables X .

Example 22.3. Let X have an exponential(λ) distribution. Then

MX(t) =

∫ ∞
−∞

etxfX(x) dx =

∫ ∞
0

etxλe−λx dx = λ

∫ ∞
0

e−(λ−t)x dx.

Of course, this integral only converges if λ− t > 0. In this domain, we get

MX(t) =
λ

−(λ− t)
e−(λ−t)

∣∣∣∣x=∞

x=0

=
λ

−(λ− t)
(−1) =

λ

λ− t
.
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In other words (simplifying a little), we have

MX(t) =


1

1− t/λ
, −∞ < t < λ

∞, t ≥ λ

Example 22.4. Let X ∼ N(0, σ2). Then

MX(t) =

∫ ∞
−∞

etx
1√

2πσ2
e−x

2/2σ2

dx =
1√

2πσ2

∫ ∞
−∞

e−x
2/2σ2+txdx.

We can evaluate this integral by making a change of variables. The idea is to complete
the square:

− x2

2σ2
+ tx = − 1

2σ2
(x2 − 2tσ2x) = − 1

2σ2
(x2 − 2tσ2x+ (tσ2)2 − (tσ2)2)

= − 1

2σ2
(x− tσ2)2 +

1

2
t2σ2.

Hence

MX(t) =
1√

2πσ2

∫ ∞
−∞

e−
1

2σ2 (x−tσ2)2+ 1
2
t2σ2

dx = e
1
2
σ2t2 · 1√

2πσ2

∫ ∞
−∞

e−
1

2σ2 (x−tσ2)2

dx.

Now, for the integral, we can make the change of variables u = x − tσ2. Since t is a
constant with respect to x, this means that du = dx, and also the domain (−∞,∞) does
not change, so

1√
2πσ2

∫ ∞
−∞

e−
1

2σ2 (x−tσ2)2

dx =
1√

2πσ2

∫ ∞
−∞

e−u
2/2σ2

du = 1

because this is exactly the N(0, σ2) density. Thus,

MX(t) = e
1
2
σ2t2 .

Example 22.5. If X has a power law, fX(x) = (ρ− 1)x−ρ for x ≥ 1, where ρ > 1, then

MX(t) = (ρ− 1)

∫ ∞
1

etxx−ρ dx.

The function etxx−ρ does not have an elementary anti-derivative, so we cannot write a
formula here and take limits. But we can actually easily see that, for any t > 0 and any
ρ > 1, the function etxx−ρ → ∞ as x → ∞, so there is no hope this integral con converge.
So we have

MX(t) =∞ when t > 0.

For t = 0 we get MX(0) = 1 as usual. When t < 0, the integral does converge, though it
cannot be written in simple terms.

There is no need to restrict ourselves to the continuous world.
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Example 22.6. Let X represent a fair coin toss (a Bernoulli random variable), with P(X =
1) = 1

2
and P(X = 0) = 1

2
. Then

MX(t) = E(etX) = et·1P(X = 1) + et·0P(X = 0) =
1

2
(1 + et).

If we had instead decided to let −1 represent tails, so P(Y = 1) = P(Y = −1) = 1
2
, then

MY (t) = E(etY ) =
1

2
et·1 +

1

2
et·(−1) =

et + e−t

2
= cosh t.

Example 22.7. Suppose X is a Poisson(λ) random variable. Then

MX(t) = E(etX) =
∞∑
n=0

etnP(X = n)

=
∞∑
n=0

etne−λ
λn

n!
= e−λ

∞∑
n=0

(etλ)n

n!
= e−λ · eetλ = eλ(et−1).

Example 22.8. Let X be binomial(n, p). Then

MX(t) =
n∑
k=0

etkP(X = k) =
n∑
k=0

etk
(
n

k

)
pk(1− p)n−k.

To evaluate this sum, the trick is to combine etk with pk to give (etp)k:

MX(t) =
n∑
k=0

(
n

k

)
(etp)k(1− p)n−k.

The binomial theorem then tells us that

MX(t) = (etp+ (1− p))n.

22.2. Why ‘moment-generating’? We’ve seen how useful the cumulative distribution
function and density function can be in calculating probabilities associated to random
variables. The moment-generating function isn’t as good for such calculations, but there’s
one things it’s really good at.

Proposition 22.9. Let X be a random variable, and suppose that the function MX(t) = E(etX)
is differentiable in a neighbourhood of t = 0. Then for positive integers n

dn

dtn
MX(t)

∣∣∣∣
t=0

= E(Xn).

The quantities E(Xn) are called the moments of X . Of particular interest are, of course,
the n = 1 case (the expectation) and the n = 2 case (which we can use, with the expecta-
tion, to compute the variance).
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Proof. The idea is very simple:

dn

dtn
E(etX) = E

(
dn

dtn
etX
)
.

Once we pass the derivatives inside, we are differentiating the function t 7→ eXt where X
is a constant; this nth derivative is dn

dtn
eXt = XneXt. Hence

dn

dtn
E(etX) = E(XnetX).

Setting t = 0 gives the result. �

Remark 22.10. The only technical point here is the question of passing the derivative
through the expectation. If X has a density, this is the question of whether

d

dt

∫ ∞
−∞

etxfX(x) dx =

∫ ∞
−∞

d

dx
etxfX(x) dx.

Interchanging integrals and derivatives (with respect to different variables) is usually le-
gal, but it is an interchange of limits and needs some justification. The assumption of the
proposition, that MX is differentiable in a neighbourhood of 0, is actually strong enough
to imply this interchange is valid; if you are interested in the details, you should consider
taking Math 140A/B/C.

Remark 22.11. Another way to prove the proposition is to expand etX in a power series:

etX =
∞∑
n=0

(tX)n

n!
.

Then using the linearity of E, we have

MX(t) = E(etX) =
∞∑
n=0

E((tX)n

n!
=
∞∑
n=0

1

n!
E(Xn)tn.

(Note: we have again interchanged limits, since we only really know E is linear over finite
sums. So this step also needs technical justification.) For any convergent power series
g(t) =

∑∞
n=0 ant

n, it is well-known (from Taylor’s theorem) that the nth derivative at 0 is
g(n)(0) = n!an. In this case, an = E(Xn)/n!, so this gives the result.

Example 22.12. Let X be a standard normal random variable N(0, 1). As calculated in
Example 22.4,

MX(t) = e
1
2
t2 .

So we can calculate all the moment of X by repeatedly differentiating. Actually, we can
do this faster by expanding in a power series:

MX(t) =
∞∑
n=0

1

n!

(
1

2
t2
)n

=
∞∑
n=0

1

2nn!
t2n.

This power series has only even powers of t in it, and so we have E(Xn) = 0 when n is
odd. When n is even, we can use the trick from Remark 22.11:

d2n

dt2n
MX(t)

∣∣∣∣
t=0

= (2n)! · 1

2nn!
=

(2n)!

2nn!
.
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We can simplify this a little:
(2n)!

2nn!
=

2n(2n− 1)(2n− 2)(2n− 3) · · · 4 · 3 · 2 · 1
2n · 2(n− 1) · 2(n− 2) · · · 2(2) · 2(1)

= (2n− 1)(2n− 3) · · · 3 · 1.

This product is sometimes referred to as a double-factorial, E(X2n) = (2n− 1)!!

In particular, we can quickly list off that E(X) = 0 and E(X2) = 1, so VarX = 1.
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23. LECTURE 23: NOVEMBER 19, 2010

Example 23.1. Let X be exponential(λ) with λ > 0. Then MX(t) = λ
λ−t is differentiable

near 0, and so we can differentiate

M ′
X(t) = − λ

(λ− t)2
· (−1) =

λ

(λ− t)2
.

So M ′(0) = λ
λ2 = 1

λ
, as we’ve already calculated. Similarly,

M ′′
X(t) =

d

dt

λ

(λ− t)2
=
−2λ

(λ− t)3
· (−1) =

2λ

(λ− t)3
.

So M ′′(0) = 2
λ2 , and so Var(X) = E(X2)− E(X)2 = M ′′

X(0)−M ′
X(0)2 = 2

λ2 − 1
λ2 = 1

λ2 .

We can calculate all the higher moments simultaneously with a power-series approach:

MX(t) =
1

1− t/λ
=
∞∑
n=0

(t/λ)n =
∞∑
n=0

1

λn
tn.

Hence, the nth derivative is n! times the coefficient of tn, and so

E(Xn) =
n!

λn
.

Example 23.2. LetX be binomial(n, p). Calculating moments directly involves doing some
very tricky binomial sums. But, as we calculated in Example 22.8,

MX(t) = (etp+ (1− p))n

so we can quickly calculate moments by differentiating.

M ′
X(t) = n(etp+ (1− p))n−1etp,

so E(X) = M ′
X(0) = n(e0p+ 1− p)n−1e0p = np. Now, using the product rule,

M ′′
X(t) = n(n− 1)(etp+ (1− p))n−1(etp)2 + n(etp+ (1− p))n−1etp

so E(X2) = M ′′
X(0) = n(n− 1)p2 + np. So we can calculate

VarX = E(X2)− E(X)2 = n(n− 1)p2 + np− (np)2 = −np2 + np = np(1− p).

23.1. Independence. Suppose X and Y are independent random variables. Remember,
this means that for any x, y ∈ R,

P(X ≤ x, Y ≤ y) = P(X ≤ x)P(Y ≤ y).

Now, fix t ∈ R, and consider the new random variables etX and etY . Except at t = 0, for
any a, b > 0 we can express the event

{etX ≤ a} = {tX ≤ ln a} = {X ≤ 1

t
ln a}

{etY ≤ b} = {tY ≤ ln b} = {Y ≤ 1

t
ln b}.
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Hence,

P(etX ≤ a, etY ≤ b) = P(X ≤ 1

t
ln a, Y ≤ 1

t
ln b) = P(X ≤ 1

t
ln a)P(Y ≤ 1

t
ln b)

= P(etX ≤ a)P(etY ≤ b).

In other words, for t 6= 0, the random variables etX and etY are also independent. When
t = 0, on the other hand, etX = etY = e0 = 1, and the constant random variable 1 is
independent from itself. So it works for all t.

Why is this important? Recall that, whenever random variables A,B are independent,
E(XY ) = E(X)E(Y ). (We proved this in the discrete case; in the continuous case, the
proof is similar.) This is a very powerful tool for calculating the density of a sum of
independent random variables.

Example 23.3. Let X ∼ N(0, σ2
1) and Y ∼ N(0, σ2

2) be normal random variables. As we
calculated in Example 22.4,

MX(t) = eσ
2
1t

2/2, MY (t) = eσ
2
2t

2/2.

Thus, if X and Y are independent,

MX+Y (t) = eσ
2
1t

2/2eσ
2
2t

2/2 = e(σ2
1+σ2

2)t2/2.

But this is the moment-generating function of a N(0, σ2
1 + σ2

2) random variable. So we
have very quickly proved that X + Y has a normal N(0, σ2

1 + σ2
2) distribution.

So, in the presence of independence, the moment generating function transforms addition
X + Y into multiplication MX(t)MY (t). It might be more natural to have a transform that
converts addition to addition. We can accomplish this by taking the logarithm:

lnMX+Y (t) = ln (MX(t)MY (t)) = lnMX(t) + lnMY (t)

when X, Y are independent. So we define a new transform

CX(t) = lnMX(t) = lnE(etX).

If we expand MX(t) in a power series, we get the moments:

MX(t) =
∞∑
n=0

E(Xn)

n!
tn =

∞∑
n=0

mn

n!
tn.

What happens if we expand CX in a power series?

CX(t) =
∞∑
n=0

cn
n!
tn.

What is the relationship between the cn and the moments mn? To figure this out, we need
to use Taylor’s theorem (a lot). Let’s just look at the first few cns.

c0 + c1t+
1

2
c2t

2 + · · · = CX(t) = lnMX(t) = ln(m0 +m1t+
1

2
m2t

2 + · · · )

First, remember that m0 = E(X0) = E(1) = 1. Now, Taylor’s theorem says that

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − · · ·
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If we plug in x = m1t+ 1
2
m2t

2 + · · · , we’ll get a bunch of power series. The trick is to note
that

(m1t+
1

2
m2t

2 + · · · )n = tn(m1 +
1

2
m2t+ ·)

and so these terms won’t show up until the nth power of t is considered. Thus, we only
have to use the first two terms:

c0 + c1t+
1

2
c2t

2 + · · · = (m1t+
1

2
m2t

2 + · · · )− 1

2
(m1t+

1

2
m2t

2 + · · · )2 + · · ·

= (m1t+
1

2
m2t

2 + · · · )− 1

2
(m2

1t
2 +m1m2t

3 +
1

4
m2t

4 + · · · ) + · · ·

Comparing coefficients,

c0 = 0, c1 = m1,
1

2
c2 =

1

2
m2 −

1

2
m2

1.

That is, c1 = E(X), while c2 = E(X2)− E(X)2 = VarX .

The function CX is called the cumulant generating function. The coefficients cn

CX(t) =
∞∑
n=1

cn
n!
tn = E(X)t+ VarXt2 + · · ·

are called the cumulants of X . They are polynomials in the moments of X . For example,
if we continued the above Taylor series computations, we’d find that

c3 = E(X3)− 3E(X2)E(X) + 2E(X)3.

They have statistical meaning, just like the mean and variance. c3 is called skewness; it is
a measure of whether the distribution is skewed to the left or right. c4 is called curtosis;
it is measure of whether the distribution is tall and skinny, or short and wide.

Example 23.4. If X has a N(0, σ2) law, then MX(t) = eσ
2t2/2, so

CX(t) = lnMX(t) =
1

2
σ2t2.

In other words, E(X) = c1 = 0 and VarX = c2 = σ2, as we knew, and cn = 0 for all n > 2.
This is yet another sign that Gaussians are very special. It also tells us that cumulants are,
in general, a measure of how far we are from a normal distribution.

23.2. Using sums of independent random variables. The moment generating function
is a great tool for calculating moments, and (as we just saw) for dealing with sums of
independent random variables. This is a boon for us, since many of the problems we’ve
already worked on involve sums of independent random variables, overtly or implicitly.

Example 23.5. Let X1, . . . , Xn be indpendent random variables that all have the same
(discrete) distribution:

P(Xj = 1) = p, P(Xj = 0) = 1− p, 1 ≤ j ≤ n.

Think ofX1, . . . , Xn as n independent tosses of a biased coin (with probability p of heads).
Now, let

Sn = X1 + · · ·+Xn.
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What is the distribution of Sn? Well, the state space of Sn is {0, 1, . . . , n}. To say that
Sn = k means that exactly k of the Xj’s equal 1 and the other n − k equal 0. In other
words, the event {Sn = k} is the event of k successes out of n independent trials, each
with success probability p. This is precisely the definition of the Binomial(n, p) law, so

P(Sn = k) =

(
n

k

)
pk(1− p)n−k.

The point is: the binomial distribution arises as a sum of independent random variables.
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24. LECTURE 24: NOVEMBER 22, 2010

Example 24.1 (Coupon Collector Problem). You collect coupons of some kind (e.g. baseball
cards). There are n different coupons. Every time you receive one, it is indpendently equally likely
to be any one of the n. How long does it take, on average, to collect all n coupons?

We measure time in numbers of coupons collected. Define random variables T1, T2, . . . , Tn
inductively as follows: once you have just collected j−1 distinct coupons, start counting;
let Tj be the number of coupons you collect before you get a new coupon you haven’t
collected already. So T1 = 1 (since the first coupon is always new). What we’re interested
in is the total time to collect all n distinct coupons, or Sn = T1 + T2 + · · ·+ Tn.

First we can calculate expectation. We have E(Sn) = E(T1) +E(T2) + · · ·+E(Tn). Now, we
can actually calculate the distribution of Tj . Once we have collected j−1 distinct coupons,
there are n− (j−1) remaining ones. Each time we get a new coupon, it is equally likely to
be any of the total n; so the probability that it is one of the desirable n− (j − 1) is n−(j−1)

n
.

Each new coupon collection is therefore an independent trial with success probability
pj = n−(j−1)

n
, meaning that the time Tj of first success is a geometric(pj) random variable.

In particular, E(Tj) = 1
pj

= n
n−(j−1)

. Therefore

E(Sn) =
n∑
j=1

n

n− (j − 1)
.

If we reindex this sum with k = n − (j − 1), then k ranges from 1 (when j = n) up to n
(when j = 1), so

E(Sn) =
n∑
k=1

n

k
= n ·

(
1 +

1

2
+

1

3
+ · · ·+ 1

n

)
.

The number Hn = 1 + 1
2

+ 1
3

+ · · · + 1
n

is called the harmonic number. There is no simple
formula for it, so the most precise answer we can give is that E(Sn) = nHn. But we can
get a sense for how big the number is by approximating the sum by an integral:

n∑
k=1

1

k
≈
∫ n

1

dt

t
= lnn.

So E(Sn) ≈ n lnn. For example, if the coupons are actually playing cards, so n = 52, we
get E(S52) = 52H52 ≈ 52 ln 52 = 205.46467 to 5 decimal places. In this case we can also
explicitly calculate (using a computer) to find that 52H52 = 235.97829 to 5 decimal places.
So the approximation gives the right order of magnitude, but isn’t that great actually.

We can do better by asking how close Hn is to lnn in general. Euler did this. In fact, it
can be shown that Hn is always bigger than lnn, but that the difference Hn − lnn stays
bounded; in fact, it decreases, and it has a limit:

lim
n→∞

(Hn − lnn) = γ = 0.5772156649 . . .

This number is called Euler’s constant. Nobody knows a nice expression for this num-
ber. Nobody knows if its rational or irrational! But knowing how big it is to fairly good
accuracy, we can make the better approximation

Hn ≈ lnn+ γ,
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so that
E(Sn) = nHn ≈ n lnn+ γn.

When n = 52, this gives
52 ln 52 + γ · 52 = 235.47989

to 5 decimal places – this is much better, accurate to within 0.5. (In fact, an even better
approximation of nHn is n lnn+ γn+ 1

2
; with n = 52 this is accurate to within 0.002.)

This is just the expectation of Sn. We would like to know more information about its
distribution. To calculate more, we notice the following. Suppose we know that T1 =
t1, T2 = t2, . . . , Tj−1 = tj−1 for some particular values of t1, . . . , tj−1. (In fact, we know that
t1 = 1.) Consider the conditional distribution

P(Tj = t|T1 = t1, T2 = t2, . . . , Tj−1 = tj−1).

The point here is that, past information is actually no help here. Once we have passed
time t1 + · · · + tj−1, there is some random collection of j − 1 coupons we have collected.
But each now collection is independent of all past (and future) ones, and so the length
of time it takes to find a coupon not in that group of j − 1 does not depend at all on the
earlier times for success. In other words

P(Tj = t|T1 = t1, T2 = t2, . . . , Tj−1 = tj−1) = P(Tj = t).

In other words, T1, . . . , Tj are independent. This is true for all j, so T1, . . . , Tn are inde-
pendent. We could, therefore, in principle calculate the distribution of Sn, since Sn =
T1 + · · · + Tn is the sum of independent random variables, the distribution of each we
know. In fact we could write down a formula for P(Sn = k), but instead let us just use
this independence information to calculate variance. Recall that, when T1, . . . , Tn are in-
dependent, Var(T1 + · · ·+ Tn) = VarT1 + · · ·+ VarTn. So

VarSn =
n∑
j=1

VarTn.

Since Tj is geometric(pj) where pj = n−(j−1)
n

= 1− j−1
n

, we have (as calculated earlier in the
quarter, and as you are recalculating using moment-generating functions on Homework
8)

VarTj =
1− pj
p2
j

=
j−1
n

(1− j−1
n

)2
= n

j − 1

(n− j + 1)2
.

Thus

VarSn = n
n∑
j=1

j − 1

(n− j + 1)2
.

This is another sum that cannot be explicitly simplified. Making the same change of
variables k = n − (j − 1) we did before, the sum runs from k = 1 (when j = n) to k = n
when j = 1), giving

VarSn = n
n∑
j=1

n− k
k2

= n2

n∑
k=1

1

k2
− n

n∑
j=1

1

k
.
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The subtracted term is nHn = E(Sn), which we already approximated as close to n lnn +

γn. Now, the sum
∑n

k=1
1
k2 grows with n, but has a finite limit as n → ∞:

∑n
k=1

1
k2 = π2

6
(also computed by Euler). Thus

VarSn ≈
π2

6
n2 − n lnn− γn.

When n = 52, this approximation gives VarS52 ≈ 4212.42183 to 5 decimal places; this is
compared to the actual value which we can compute (with a computer) 4160.42023.

24.1. Markov and Chebyshev’s Inequalities. There is an important reason we keep cal-
culating variances. We have identified the standard deviation σ(X) =

√
VarX as a mea-

sure of how spread-out the distribution ofX is. We will now rigorously prove a statement
to this effect.

Lemma 24.2 (Markov’s inequality). Let X be a random variable, with finite absolute expecta-
tion E(|X|). Then for any t > 0,

P(|X| > t) ≤ E(|X|)
t

.

Proof. This is another exercise in the relationship between expectation and probability. We
have a random variable X : Ω→ R defined on some sample space Ω. We are interested in
the probability of the event {|X| > t}. For any event A we have

P(A) = E(1A).

So, with A = {|X| > t},
P(|X| > t) = E(1|X|>t).

Now, here’s the key observation: when |X| > t, 1
t
|X| > 1. On the other hand, when

|X| ≤ t, 1
t
|X| ≥ 0, which is the value of 1|X|>t when |X| ≤ t. Altogether, this means

1

t
|X| ≥ 1|X|>t.

Taking expectations gives
1

t
E(|X|) ≥ E(1|X|>t) = P(|X| > t).

�

Corollary 24.3 (Chebyshev’s inequality). Let X be a random variable with finite expectation
and variance. Then for any t > 0,

P (|X − E(X)| > sσ(X)) ≤ 1

s2
.

Proof. We apply Markov’s inequality to the random variable Y = (X − E(X))2. Notice
that Y ≥ 0, so |Y | = Y , and by definition E(Y ) = E((X − E(X))2) = VarX . Therefore

P(|Y | > t) ≤ E(|Y |)
t

=
VarX

t
.
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Now, |Y | > t means (X − E(X))2 > t, which means |X − E(X)| >
√
t. Thus

P(|X − E(X)| >
√
t) ≤ VarX

t
.

Finally, take t = s2VarX . Then
√
t = s

√
VarX = sσ(X), and so

P (|X − E(X)| > sσ(X)) ≤ VarX

s2VarX
=

1

s2
.

�

Chebyshev’s inequality gives a quantitative bound on how likely a random variable is to
be far from its mean, measured in number of standard deviations. The inequality gives no
information when s < 1, since there it asserts that a certain probability is less than 1/s2 > 1
- no duh! But when s = 2 for example, it asserts that

P(|X − E(X)| > 2σ(X)) ≤ 1

4
.

In other words, any random variable spends at least 75% of its time within two standard
deviations of its mean.

Example 24.4. As we have calculated, if X is N(0, σ2), then

P(|X| ≤ 2σ2) ≈ 95%,

much better than 75%. But this is only true for Gaussians. In general, Chebyshev’s inequal-
ity cannot be improved: there are random variables (like ones we’ve seen with lots of
mass at the edges and very little in the middle) that achieve the bound exactly.

Example 24.5. Let’s look at the Coupon Collector Problem of Example 24.1 once more. We
showed that, the time Sn to collect all n coupons has expectation E(Sn) = nHn ≈ n lnn+γn

while VarSn = n2Pn − nHn ≈ π2

6
n2 − n lnn − γn where γ = 0.5772156649 . . . is Euler’s

constant, and Pn =
∑n

k=1
1
k2 . Thus

σ(Sn) = n
√
Pn −Hn/n

where
√
Pn −Hn/n is close to π/

√
6. For example, when n = 52, exact calculation gives

σ(S52) = 64.50132 to 5 decimal places, while 52 · π/
√

6 = 66.69259 to 5 decimal places.
The upshot is that, since E(S52) is about 236 while σ(S52) is about 65, we know that with
probability at least 75%, |S52 − 236| ≤ 2 · 65, or

P(S52 ∈ [106, 366]) ≥ 75%.

If we look at a 3σ = 195 interval, we get a probability of 1− 1
9

= 88.888 . . .%, so

P(S52 ∈ [41, 431]) ≥ 88.8%.

Note, in this latter case, we must have enough time to collect all 52 coupons, so the lower
bound of 41 is meaningless: we know S52 ≥ 52. But the upper bound is still meaningful:
collecting 52 coupons will take at most 431 collections, with probability at least 88.8%.
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24.2. Covariance. As we proved earlier in the quarter, if X1, X2, . . . , Xn are independent,
then

Var(X1 + · · ·+Xn) = VarX1 + · · ·+ VarXn.

Something interesting came out of the calculation that proved this formula. In general,
without assuming independence, we had

Var(X + Y ) = E[(X + Y )2]− [E(X) + E(Y )]2

= E(X2) + 2E(XY ) + E(Y )2 − E(X)2 − 2E(X)2E(Y )2 − E(Y )2

= Var(X) + Var(Y ) + 2E(XY )− 2E(X)E(Y ).

The quantity added to the sum of the variances is called covariance:

Cov(X, Y ) = E(XY )− E(X)E(Y ) = E[(X − E(X))(Y − E(Y ))].

IfX, Y are independent, then Cov(X, Y ) = 0. The converse is not true. In general, random
variables that have covariance 0 are called uncorrelated.

Example 24.6. Let X be uniform on [−1, 1]. Let Y = X2. Then X and Y are certainly not
independent: for example, P(Y ≤ 1

4
) = P(−1

2
≤ X ≤ 1

2
) = 1

2
, but

P(X ≤ 1

2
, Y ≤ 1

4
) = P(X ≤ 1

2
,−1

2
≤ X ≤ 1

2
) = P(−1

2
≤ X ≤ 1

2
) =

1

2
while

P(X ≤ 1

2
)P(Y ≤ 1

4
) =

3

4
· 1

2
=

3

8
.

However, we can quickly calculate

E(X) =

∫ 1

−1

x · 1

2
dx = 0

E(Y ) = E(X2) =

∫ 1

−1

x2 · 1

2
dx =

1

3
x3

∣∣∣∣x=1

x=−1

=
2

3

E(XY ) = E(X3) =

∫ 1

−1

x3 · 1

2
dx = 0.

Thus, E(XY ) = 0 = E(X)E(Y ), so Cov(X, Y ) = 0.

Uncorrelated random variables are “approximately independent”; precisely, they are in-
dependent to second order. By construction, ifX1, X2, . . . , Xn are all uncorrelated Cov(Xi, Xj) =
0 for i 6= j, then

Var(X1 + · · ·+Xn) = VarX1 + · · ·+ VarXn

just as for independent random variables. In the real world, when we collect data, it is
difficult (essentially impossible) in most cases to determine if variables are independent;
but it is easy to compute covariance. As we will see in the next few lectures, many of
the major theorems about large aggregates of data work just as well with uncorrelated
random variables as with truly independent random variables.
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25. LECTURE 25: NOVEMBER 24, 2010

We now stand ready to finally justify that our model of probability theory matches up
with our intuitive notion of probability being long-term frequency of success.

25.1. The weak law of large numbers. Let X1, X2, X3, . . . be a sequence of random vari-
ables defined on a common probability space (Ω,P). We think of Xk as the number mea-
sured in the kth trial of an experiment. Hence, we assume the Xk are independent, and
all have the same distribution. We then look at the average value

Xn =
Sn
n

=
X1 + · · ·+Xn

n
.

Our first theorem shows that this random variable Xn is very close to constant for large
n.

Theorem 25.1 (WLLN). Suppose that the Xk are independent, all with the same distribution,
and let E(Xk) = µ and Var(Xk) = σ2 exist. Then for any ε > 0,

lim
n→∞

P(|Xn − µ| > ε) = 0.

In other words, no matter how small a window (µ − ε, µ + ε) we want to consider, even-
tually Xn stays within this window with high probability.

Proof. Note that

Xn − µ =
Sn
n
− µ =

Sn − µn
n

.

Now, µ = E(X1) = E(X2) = · · · = E(Xn), so by linearity of E,

E(Sn) = E(X1 + · · ·+Xn) = E(X1) + · · ·+ E(Xn) = nµ.

Therefore

P(|Xn − µ| > ε) = P
(
|Sn − E(Sn)|

n
> ε

)
= P(|Sn − E(Sn)| > nε).

We want to use Chebyshev’s inequality to estimate this; to do so, we need to have the
standard deviation of Sn on the right hand side.

P(|Sn − E(Sn)| > nε) = P(|Sn − E(Sn)| > nε

σ(Sn)
σ(Sn)) ≤ 1

( nε
σ(Sn)

)2
=

Var(Sn)

n2ε2
.

Now, since the Xk are independent,

VarSn = Var(X1 + · · ·+Xn) = VarX1 + ·+ VarXn = nσ2.

So, we find altogether that

P(|Xn − µ| > ε) = P(|Sn − E(Sn)| > nε) ≤ Var(Sn)

n2ε2
=
nσ2

n2ε2
=

σ2

ε2n
.

For any ε > 0, this converges to 0 as n→∞, proving the theorem. �

Remark 25.2. Actually, this proof didn’t require as many conditions as the theorem re-
quired. The only place independence was used was to justify VarSn = nσ2, which holds
more generally if the variables are uncorrelated. Also, the only thing about the distribution
we needed to know was that E(Xk) = µ and VarXk = σ2 for all k.
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25.2. The strong law of large numbers. The weak law of large numbers helps to justify
our intuition about long-term frequencies: the (empirical) average of a set of independent
data is very concentrated near its mean, and gets more and more concentrated at the
rate of about 1

n
as n → ∞. However, in Lecture 2, we presented our intuition about

what probability should mean in terms of the existence of certain limits: an event E has
probability p if the limit

lim
n→∞

Nn(E)

n
= p

where Nn(E) is the number of times E occurs in n independent trials. The very existence
of this limit was the big outstanding question. To see that we have produced a theory that
can answer this question, we need the following strong law of large numbers.

Theorem 25.3 (SLLN). Let X1, X2, X3, . . . be a sequence of independent random variables, each
with the same distribution. Suppose that E(X4

k) < ∞. Let E(Xk) = µ. Setting Xn = Sn
n

where
Sn = X1 + · · ·+Xn, then

P
(

lim
n→∞

Xn = µ
)

= 1.

This theorem says that the random variables Xn actually converge to a constant (with
probability 1). This is the precise statement we were looking for, on the existence of limits
to justify probability theory as a theory of limiting frequencies. This proof requires the
4th moment to exist; in fact, there are proofs that require only the expectation to exist, but
they are much technically harder.

Proof. First, let’s subtract off the µ: we will prove that limn→∞(Xn − µ) = 0. Let’s actually
define centered random variables from the start: Yn = Xn−µ, so that E(Yn) = 0. Then with
Y n = 1

n
(Y1+· · ·+Yn), we have Y n = 1

n
(X1−µ+X2−µ+· · ·+Xn−µ) = 1

n
(Sn−nµ) = Xn−µ;

in other words, we want to prove that limn→∞ Y n = 0 with probability 1.

The random variables Yn are also independent, and identically distributed. We can com-
pute that

E(Y 4
k ) = E((Xk − µ)4) = E(X4

k)− 4µE(X3
k) + 6µ2E(X2

k)− 4µ3E(Xk) + µ4,

and since |E(Xk)| ≤ |E(X2
k)| ≤ |E(X3

k)| ≤ E(X4
k), this is also finite. Let’s give it a name:

E(Y 4
k ) = κ4. Also, E(Y 2

k ) = E((Xk − µ)2) = E(Xk − E(Xk))
2 = VarX1; call this σ2 Why

should we care about these quantities? Well, let Tn = Y1 + · · ·+ Yn, so that Y n = Tn
n

. Then

E(Y
4

n) =
1

n4
E(T 4

n) =
1

n4
E

(
n∑
k=1

Yk

)4

.

Let’s expand out this sum.(
n∑
k=1

Yk

)4

=

(
n∑
i=1

Yi

)(
n∑
j=1

Yj

)(
n∑
k=1

Yk

)(
n∑
`=1

Y`

)

=
n∑

i,j,k,`=1

YiYjYkY`.
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When we take expectations, different things happen depending on how many of the in-
dices are equal or not. For example, one of the terms that comes up is Y1Y3Y1Y7; using
independence, we have

E(Y1Y3Y1Y7) = E(Y 2
1 Y3Y7) = E(Y 2

1 )E(Y3)E(Y7)

and this equals 0 since E(Y3) = 0. This kind of argument shows that a lot of the terms
in the big quadruple sum have expectation 0. In fact: whenever one of i, j, k, ` is distinct
from the other 3 (lets say it’s i), we have

E(YiYjYkY`) = E(Yi)E(YjYkY`) = 0

since Yi is independent from YjYkY`. So when we take expectations, the only terms that
survive in the quadruple sum are those for which every index is repeated at least once.
This can happen in two ways:

• All four indices are the same: i = j = k = `. There are n such terms, and in each
case

E(YiYjYkY`) = E(Y 4
i ) = κ4.

• The indices come in two pairs: that is, we divide the set of four indices into 2
groups of size 2 (which can be done in

(
4
2

)
= 6 ways), and then assign two distinct

values to the two groups (which can be done in
(
n
2

)
= 1

2
n(n− 1) ways). For each of

these 3n(n− 1) terms, the expectation is

E(YiYjYkY`) = E(Y 2
1 )E(Y 2

2 ) = σ4.

So, we can actually calculate that

E

(
n∑
k=1

Yk

)4

= nκ4 + 3n(n− 1)σ4.

Thus,

E(Y
4

n) =
nκ4 + 3n(n− 1)σ4

n4
≤ (3σ4 + κ4)n2

n4
=

3σ4 + κ4

n2
.

The constant on the top doesn’t matter; what matters is that it is finite. The sequence 1
n2 is

summable; that is
∞∑
n=1

E(Y
4

n) ≤
∞∑
n=1

3σ4 + κ4

n2
<∞.

But now we interchange the sum and the expectation
∞∑
n=1

E(Y
4

n) = E

(
∞∑
n=1

Y
4

n

)

so the random variable
∑∞

n=1 Y
4

n has finite expectation. This cannot happen if this non-
negative random variable is infinite on a set with positive probability! Hence, we have
proved that

P(
∞∑
n=1

Y
4

n <∞) = 1.
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But for any sequence an, if
∑∞

n=1 an <∞ then an → 0 as n→∞. Hence,{
∞∑
n=1

Y
4

n <∞

}
⊂
{

lim
n→∞

Y
4

n = 0
}

=
{

lim
n→∞

Y n = 0
}
.

So finally, we have

1 = P

(
∞∑
n=1

Y
4

n <∞

)
≤ P

(
lim
n→∞

Y n = 0
)
.

This completes the proof. �

With this, we can now justify our formulation of probability theory.

Corollary 25.4 (Borel’s law of large numbers). Let E be an event in some sample space Ω.
Perform repeated independent trials, and record the number of times Nn(E) that E occurs in the
first n trials. Then

lim
n→∞

Nn(E)

n
exists.

Proof. This is just a question of interpreting what is meant by “perform repeated inde-
pendent trials”. The precise interpretation we give is: let T1, T2, T3, . . . be a sequence if
independent, identically distributed random variables taking values in Ω. We then inter-
pret the statement “E occurs in the nth trial” as the event Tn ∈ E.

Now define new random variables X1, X2, X3, . . . by

Xn = 1E(Tn).

Since the Tn are independent, so are theXn. We can also quickly work out the distribution
of Xn: it takes only two values, 0 and 1, with probabilities

P(Xn = 1) = P(1E(Tn) = 1) = P(Tn ∈ E) = P(T1 ∈ E) ≡ p,

P(Xn = 0) = P(1E(Tn) = 0) = P(Tn /∈ E) = P(T1 /∈ E) = 1− p.

Thus, the Xn are also independent and identically distributed. Finally, we compute
E(Xn) = 1 · p+ 0 · (1− p) = p. The strong law of large numbers therefore asserts that

lim
n→∞

Xn = p, with probability 1.

But what does Xn represent? It is

Xn =
X1 + · · ·+Xn

n
.

Since Xj = 1 iff Tj ∈ E and 0 otherwise, the sum X1 + · · ·+Xn counts exactly the number
of times E occurs in the first n trials; that is, X1 + · · · + Xn = Nn(E), and this concludes
the proof. �
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Example 25.5. Suppose that the stock market behaves in the following ridiculously oversimplifies
manner: each year, it either grows 20% or shrinks 20%, each possibility occurring independently
with probability 1

2
. After n years (for large n), how do we expect the market has changed?

Let Mn be the value of the market after n years. Then the model is that Mn = Mn−1Xn

where Xn is a random variable taking values 1.2 and 0.8 with probabilities 1
2

each, and
where the X1, X2, X3, . . . are independent. Thus

Mn = M0X1X2 · · ·Xn

where M0 is the initial value of the market. We know how to handle sums of independent
random variables, so to get this into a form we can understand, we take logarithms:

lnMn = lnM0 + lnX1 + ·+ lnXn.

Now, the random variables lnX1, lnX2, lnX3, . . . are independent, and each has distribu-
tion

P(lnXk = ln 1.2) = P(lnXk = ln 0.8) =
1

2
.

So the expected value of lnXk is

E(lnXk) =
1

2
(ln 1.2 + ln 0.8) =

1

2
ln(1.2 · 0.8) =

1

2
ln 0.96.

Not that this is negative. The strong law of large numbers now tells us that, with proba-
bility 1,

lim
n→∞

lnX1 + · · ·+ lnXn

n
=

1

2
ln 0.96.

So, for large n,

lnX1 + · · ·+ lnXn ≈
1

2
ln 0.96 · n.

Exponentiating, the product is

X1 · · ·Xn = elnX1+···+lnXn ≈ e
1
2
n ln 0.96 = (0.96)n/2.

So we have that the value of the market after n years is, for large n, approximately

Mn ≈M0 · (0.96)n/2.

In other words, in this model, the market decays exponentially over time. This is therefore
not a good model! It may be surprising that, with equal probabilities of positive and
negative growth, we get overall negative growth. This is precisely because the growths
are measured in percentages of the current total, not some absolute: a 20% reduction of
120% of the initial value corresponds to 24% of the initial value; but a 20% increase of 80%
of the initial value is only a 16% increase from the initial value.
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26. LECTURE 26: NOVEMBER 29, 2010

26.1. Rate of Convergence. The (weak and strong) laws of large numbers show that if
X1, X2, X3, . . . are independent and identically distributed, with expectation µ, then the
empirical average Xn converges to µ:

lim
n→∞

Xn = lim
n→∞

X1 + · · ·+Xn

n
= µ.

How fast does it converge? To answer this question, its better to “standardize” by sub-
tracting µ:

lim
n→∞

(Xn − µ) = 0.

The question is: how fast does this converge to 0? An exact answer is pretty tricky to find,
but we can get a very close approximation by looking at the standard deviation. This is
actually how we proved the weak law of large numbers.

Var(Xn − µ) = VarXn = Var

(
X1 + · · ·+Xn

n

)
=

1

n2
Var(X1 + · · ·+Xn).

Since the Xk’s are independent, Var(X1 + · · · + Xn) = VarX1 + · · · + VarXn = nσ2 where
σ2 = VarXk is the common variance. Thus

Var(Xn − µ) =
nσ2

n2
=
σ2

n
.

Taking square roots, the standard deviation is

σ(Xn − µ) =
σ√
n
.

Hence, the standard deviation (a measure of spread) of Xn − µ decays like σ/
√
n. It is

customary to “standardize” by dividing by σ; so we have that

the standard deviation of
Xn − µ

σ
is =

1√
n
.

So a good guess is that the sequence [Xn(ω)− µ]/σ converges to 0 at the rate 1√
n

for each
specific outcome ω. Of course, this can’t be exact since there is randomness. In fact, the
randomness results in a very slightly larger rate of precise decay:

Xn − µ
σ

≈
√

2 ln lnn

n
as n→∞.

This is called the law of the iterated logarithm (because it involves an iterated logarithm),
and was first proved by Khinchin in 1924. But this is beyond the tools we’ve developed
in this class; if you continue into 180B and 180C, you may say it.

Note, this means that if we multiply Xn − µ by nα for any α < 1
2
, it still converges to 0.

It is better to write this in terms of the empirical sum rather than the empirical average:
Sn = X1 + · · ·+Xn, so Sn = nSn. So

the standard deviation of
Sn/n− µ

σ
=
Sn − nµ
nσ

is =
1√
n

= n−1/2.
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So, multiplying both sides by nα

the standard deviation of nα
Sn − nµ
nσ

=
Sn − nµ
n1−ασ

is = nα−1/2.

Since nα−1/2 → 0 as n→∞ provided α < 1/2, we can divide Sn−nµ by something smaller
than n and still get 0. But this stops working when we get to α = 1/2, where the statement
is

the standard deviation of
Sn − nµ
σ
√
n

is = 1.

So there’s no way this can converge to 0. So as n → ∞, this rescaled random variable
maintains its randomness. In fact, something miraculous happens. The limiting distribu-
tion of this random variable is completely universal.

26.2. The Central Limit Theorem.

Theorem 26.1 (Central Limit Theorem). LetX1, X2, X3, . . . are independent, identically-distributed
random variables, with common expectation µ and standard deviation σ. Let Sn = X1 + · · ·+Xn.
Then as n → ∞, the distribution of Sn−nµ

σ
√
n

converges to a standard normal N(0, 1). That is: for
any a ≤ b,

lim
n→∞

P
(
a ≤ Sn − nµ

σ
√
n
≤ b

)
=

1√
2π

∫ b

a

e−x
2/2dx.

We will outline a proof of the Central Limit Theorem, but first it is important to fully
understand what it is saying. It may be helpful to return to the empirical mean notation.{

a ≤ Sn − nµ
σ
√
n
≤ b

}
=

{
a ≤ nXn − nµ

σ
√
n

≤ b

}
=

{
a√
n
≤ Xn − µ

σ
≤ b√

n

}
.

So, the strong law of large number together with the central limit theorem say the follow-
ing.

Let X1, X2, X3, . . . be a sequence of independent trials, each with the same distri-
bution, having mean µ and standard deviation σ. Then the standardized average
Xn−µ
σ

converges to 0 at the rate of about 1√
n

. Moreover

the probability that
Xn − µ

σ
is in the small interval

[
− a√

n
,
a√
n

]
is close to

1√
2π

∫ a

−a
e−x

2/2dx.

Example 26.2. An experimental scientist performs independent trials, in the nth trial making
a measurement Xn. The experimental setup is identical for each trial, but there is measurement
error, and uncontrollable random effects that make the measurements all different. In the end, s/he
will average the data to get an approximation of the true value µ.

If s/he knows that the true standard deviation of the data is 2, how many measurements should
s/he make so that it is 95% likely that the measured empirical average is within 0.5 units of the
true mean µ?

This is a typical formulation of a problem in statistics. The reason that 95% is the common
“sureness” probability is that

1√
2π

∫ 2

−2

e−x
2/2dx ≈ 0.9545
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Now, the central limit theorem says that, for large n,

P
(
Xn − µ ∈

[
− σa√

n
,
σa√
n

])
= P

(
Xn − µ

σ
∈
[
− a√

n
,
a√
n

])
≈ 1√

2π

∫ a

−a
e−x

2/2dx.

So, setting a = 2, this probability is over 95%. Thus, if we choose n large enough that
2σ√
n
≤ 0.5, we will get

P(Xn − µ ∈ [−0.5, 0.5]) ≥ P
(
Xn − µ ∈

[
− 2σ√

n
,

2σ√
n

])
≈ 1√

2π

∫ 2

−2

e−x
2/2dx ≥ 95%.

Since we know σ = 2 in this experiment, we need n large enough so that 4√
n
≤ 0.5, which

means
√
n ≥ 8, so n ≥ 64.

Now, there is a bit of uncertainty here. The central limit theorem only gives an approxima-
tion for finite n. So, when all is said and done, we have to ask whether the approximation
in the above step is good enough when n = 64 to justify the calculation! This is actually a
bit tricky to answer precisely, but in general the normal approximation is a very good one.
Nevertheless, if the scientist wanted to be absolutely certain, s/he could use Chebyshev’s
inequality:

P(|Xn − µ| > 0.5) ≤ VarXn

0.52
=

σ2

n · 0.52
=

16

n
.

Thus

P(|Xn − µ| ≤ 0.5) ≥ 1− 16

n
.

To make sure this is at least 95%, we should choose n large enough that 1 − 16
n
≥ 19

20
,

which means n ≥ 16 · 20 = 320. This is a lot more trials than the central limit theorem
approach suggested (a factor of 5). This is the trade-off: if we want to be sure, we can
use Chebyshev’s inequality, which is a very weak bound in general. The central limit
theorem gives only an approximation for the probability (though one that improves with
the number of trials), but the answer it gives is generally a lot more practical.
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Example 26.3. A fair coin is tossed 100 times. What is the probability that there are at least 55
heads?

We model a coin toss as a random variable X taking values 1 (heads) and 0 (tails) each
with probability 1

2
. The coin tosses are independent trials X1, . . . , X100 each with mean 0.5

and variance (0.5)(1 − 0.5) = 0.25 so standard deviation 0.5. Letting Sn = X1 + · · · + Xn

as usual, we want to calculate P(S100 ≥ 55). We can evaluate this exactly by adding the
Binomial distribution, but instead we will use the central limit theorem to approximate it.

P(S100 ≥ 55) = P(S100 − 100 · 0.5 ≥ 5) = P
(
S100 − 50

0.5
√

100
≥ 1

)
and the central limit theorem says that this is close to

1√
2π

∫ ∞
1

e−x
2/2dx

.
= 15.87%.

The precise answer is
100∑
n=55

(
100

k

)(
1

2

)100
.

= 18.4101%.

So we’re not far off, but there is still a significant gap. It turns out this is not because n is
too small; it is because we are using a continuous distribution (the Gaussian) to approxi-
mate a discrete one (the binomial). Indeed, note that

P(S100 ≥ 55) + P(S100 ≤ 54) = 1

but a continuous distribution will have some positive probability of lying in the interval
(54, 55). This is where the discrepancy comes from. There is an easy fix for this. Since
P(S100 ≤ 54) = P(S100 ≤ 54.5), we should also replace P(S100 ≥ 55) with P(S100 ≥ 54.5)
when doing the normal approximation. This is called the histogram correction. To wit,

P(S100 ≥ 55) ≈ P(S100 ≥ 54.5) = P(S100 − 50 ≥ 4.5) = P
(
S100 − 50

0.5
√

100
≥ 0.9

)
≈ 18.406%.
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27. LECTURE 27: DECEMBER 1, 2010

Example 27.1. Back in Example 10.10, we analyzed a disputed election. Candidate A
received 1405 votes, while candidate B received 1422. After the election, it was noted
that 101 more votes we cast than the number of registered voters, so 101 votes should
be disqualified – but which ones? The question is, how likely is it that throwing out a
random set of 101 votes would overturn the election results?

Instead of analyzing this is a ball and urn problem, we could just select 101 votes at
random (independently) from the batch. This is equivalently to flipping a biased coin
101 times; we identify candidate A with 1 and candidate B with 0; then each coin toss
X1, . . . , X101 has P(Xk = 1) = 1405

2827
and P(Xk = 0) = 1422

2827
. Hence

E(Xk) =
1405

2827
≈ 0.496993 VarXk =

1997910

7991929
≈ 0.249991.

These are really close to 1
2

and 1
4

(the results for a fair coin), so since we are doing an
approximation anyhow, we will use a fair coin; that is, the mean is 0.5 and the standard
deviation is

√
0.25 = 0.5. In order to reverse the election results, at most 41 of the contested

(throw-away) votes can be for candidate A. Making the histogram correction,

P(X1 + · · ·+X101 ≤ 41) = P(S101 ≤ 41.5)

= P (S101 − 101 · 0.5 ≤ 41.5− 101 · 0.5 = −9)

= P
(
S101 − 101 · 0.5

0.5
√

101
≤ −9

0.5
√

101

.
=−1.7911

)
.

So, the central limit theorem tells us that this is

≈ 1√
2π

∫ −1.7911

−∞
e−x

2/2dx
.

= 3.66%.

(The actual value we computed with ball and urn methods in Lecture 10 was 3.87%.)

The histogram correction doesn’t always improve matters. Like with numerical inte-
gration schemes: the midpoint approximation is often better than the right-end-point, but
not always (depending on convexity of the function being integrated).

Example 27.2. The numberX of students who pre-enroll in this course is Poisson(80). This room
seats 100. What is the probability there will not be enough seats in the first lecture?

We want to compute P(X > 100). Since we know P(X = n) = e−80 80n

n!
, we can actually

compute this exactly:

P(X > 100) = 1− P(X ≤ 100) = 1−
100∑
n=0

P(X = n) = 1− e−80

100∑
n=0

80n

n!
.

A computational software package like Maple can compute this quickly; it is .
=1.317%.

But we can do a normal approximation if we remember the result (from Exam 1) that if
X1, X2, . . . , Xn are Poisson(1) and independent then Sn = X1 + · · ·+Xn is Poisson(n). So we
can realize X = S80 for independent random variables with

E(Xk) = 1, VarXk = 1.
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Hence

P(X > 100) = P(S80 − 80 · 1 > 20) = P
(
S80 − 80 · 1

1 ·
√

80
>

20√
80

)
.

Using the central limit theorem, we can approximate this as

1√
2π

∫ ∞
20/
√

80

e−x
2/2dx

.
= 1.267%.

This is fairly close to the true value, but not fantastic. We might expect the histogram
correction to improve matters. This would mean

P(X > 100) ≈ P(X > 99.5) = P(S80 − 80 > 19.5) = P
(
S80 − 80√

80
>

19.5√
80

)
and the normal approximation would give

1√
2π

∫ ∞
19.5/

√
80

e−x
2/2dx

.
= 1.462%

which is actually a worse overestimate than the original answer was an underestimate.
Nevertheless, both are pretty close.

27.1. A Proof of the Central Limit Theorem. Here we will give a non-quantitative proof
of the theorem, using moment generating functions. Remember (though we have not
proved it) that the distribution of X can be recovered from its moment generating func-
tion MX(t) = E(etX). The standard normal distribution has moment generating function

MN(0,1)(t) = et
2/2.

So, one way to prove the central limit theorem is the following.

Theorem 27.3 (Central Limit Theorem). Let X1, X2, X3, . . . be a sequence of independent,
identically-distributed random variables. Suppose that their common moment generating func-
tion M = MX1 is C2 at 0. Let Sn = X1 + · · ·+Xn, let µ = E(X1), and σ2 = VarX1. Let

Mn(t) = MSn−nµ
σ
√
n

(t) = E
(
e
tSn−nµ
σ
√
n

)
.

Then
lim
n→∞

Mn(t) = MN(0,1)(t) = et
2/2.

Proof. First, let’s let s = t/
√
n; then

Mn(t) = E
(
es(Sn−nµ)/σ

)
= E

(
es[(X1−µ)/σ+···+(Xn−µ)/σ]

)
= E

(
es(X1−µ)/σ · · · es(Xn−µ)/σ

)
= E

(
es(X1−µ)/σ

)
· · ·E

(
es(Xn−µ)/σ

)
because of independence. Now, since each of the random variables (X1−µ)/σ, . . . , (Xn−
µ)/σ has the same distribution, they all have the same moment generating function; so

Mn(t) = [M(X1−µ)/σ(s)]n.
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Now, moment generating functions are always strictly positive, so we can take loga-
rithms:

lnMn(t) = n lnM(X1−µ)/σ(s).

Let’s define M(s) = M(X1−µ)/σ(s), and L(s) = lnM(s) = lnM(X1−µ)/σ(s). So L is the
cumulant generating function of (X1 − µ)/σ, and it is also C2 at 0. As we showed two
weeks ago, this means that L′(0) = E((X1 − µ)/σ) = 0, and L′′(0) = Var((X1 − µ)/σ) = 1.
So we have

lnMn(t) = nL(s) = nL(t/
√
n).

We want to find limn→∞Mn(t); it suffices to find limn→∞ lnMn(t). So we use L’Hôpital’s
rule (differentiating with respect to n).

lim
n→∞

lnMn(t) = lim
n→∞

L(t/
√
n)

1/n

= lim
n→∞

L′(t/
√
n) · − t

2
n−3/2

− 1
n2

=
t

2
lim
n→∞

L′(t/
√
n)

n−1/2
.

The equality from the first line to the second is L’Hôpital’s rule, which we can apply here
since the top is tending to L(0) = lnM(0) = ln 1 = 0, and the bottom is also tending
to 0. Now, the new limit we’ve found is a ratio where the top is tending to L′(0) = 0
we showed above, and the bottom is also tending to 0. So we can apply L’Hôpital’s rule
again, differentiating with respect to n:

lim
n→∞

lnMn(t) =
t

2
lim
n→∞

L′(t/
√
n)

n−1/2

=
t

2
lim
n→∞

L′′(t/
√
n) · − t

2
n−3/2

−1
2
n−3/2

=
t2

2
lim
n→∞

L′′(t/
√
n).

Since L′′(0) = 1, we have thus proved that

lim
n→∞

lnMn(t) =
t2

2
,

which means that
lim
n→∞

Mn(t) = et
2/2

as desired.
�
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28. LECTURE 28: DECEMBER 3, 2010

28.1. The rate of convergence in the Central Limit Theorem. We developed the CLT as a
way of quantifying how quickly the sample mean (of a collection of independent random
variables) converges to the expected value. But once we rescale appropriately (by 1√

n
,

the central limit theorem becomes an enormously powerful approximation tool, as we’ve
seen in many examples above. The question then arises: how good an approximation is
it?

That is to say: we know that if X1, X2, X3, . . . is a sequence of i.i.d. random variables
with common mean µ and common standard deviation σ, then

lim
n→∞

P
(
Sn − nµ
σ
√
n
≤ x

)
=

∫ x

−∞

1√
2π
e−t

2/2 dt = P(χ ≤ x)

where χ is a standard normal random variable. But how fast does this limit converge? If
we want to use it to approximate probabilities for finite n, we should know how large n
needs to be in general to get the difference small:∣∣∣∣P(Sn − nµσ

√
n
≤ x

)
− P(χ ≤ x)

∣∣∣∣ ≤ ??(n)

The way to approach this question is to again use the relationship between probability
and expectation. First, let’s introduce some notation:

Sn =
Sn − nµ
σ
√
n

.

I.e. Sn is the standardized sum of X1, . . . , Xn. So we want to find a bound on

|P(Sn ≤ x)− P(χ ≤ x)|.

Well, this is the same as

|E(1(−∞,x](Sn))− 1(−∞,x](χ)|

where, as usual,

1(−∞,x](y) =

{
1, y ≤ x

0, y > x

So, in general, we need a way to find an upper bound on quantities of the form∣∣E(f(Sn)− E(f(χ))
∣∣

for functions f : R → R. Now, the function f = 1(−∞,x] is not a very nice function – it is
discontinuous at x. But we can approximate it by nicer functions – even C∞ functions.
The following theorem, the Berry-Esseen Theorem, will be proved for smooth functions;
using a careful approximation scheme afterward, the same holds for the function f =
1(−∞,x], giving a worst-case scenario rate of convergence in the CLT.
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Theorem 28.1 (Berry, Esseen, 1941). Let X1, X2, X3, . . . , Xn, . . . be a sequence of i.i.d. random
variables, with common mean µ and common standard deviation σ, and common (assumed finite)
third moment ρ = E(|X1 − µ|3). Let Sn be the standardized sum, and let χ be a standard normal
random variable. Let f : R → R be a C3 function with bounded third derivative. There is a
constant C > 0 such that, for all n,∣∣E(f(Sn)− E(f(χ))

∣∣ ≤ Cρ

σ3
√
n
.

The constant C will depend on f . So, after we do the approximation, we want to know
what is the best possible C for f = 1(−∞,x]. This is an active area of research. The original
1941 theorem gave C ≤ 7.59. Over time, it has been shrunk. In fact, the most recent
improvement was in 2009: it is now known that C ≤ 0.4875. In 1956, Esseen proved that
C ≥ 0.40973, so we’re closing in on the precise value.

Proof. The key idea is to use the fact that, if χ1, χ2, . . . , χn are independent normal random
variables

χj ∼ N(0, 1√
n
)

then (as we calculated some weeks ago)

χ1 + · · ·+ χn ∼ N(0, 1) ∼ χ.

Since we only care about the distribution, we can assume freely that these variables
χ1, . . . , χn are also independent of X1, . . . , Xn. Now, Sn is also a sum of independent
random variables:

Sn =
Sn − nµ
σ
√
n

=
X1 − µ
σ
√
n

+ · · ·+ Xn − µ
σ
√
n
≡ Y1 + · · ·+ Yn.

So, we want to estimate

E[f(Y1 + · · ·+ Yn)]− E[f(χ1 + ·+ χn)].

The next (clever) idea is to write this as a telescoping sum, as follows.

E[f(Y1 + · · ·+ Yn)]− E[f(χ1 + · · ·+ χn)]

= E[f(Y1 + · · ·+ Yn)]− E[f(χ1 + Y2 + · · ·+ Yn)]

+ E[f(χ1 + Y2 + · · ·+ Yn)]− E[(f(χ1 + χ2 + Y3 + · · ·+ Yn)]

+ E[f(χ1 + χ2 + Y3 + · · ·+ Yn)]− · · ·
· · ·

+ E[f(χ1 + · · ·+ χn−2 + χn−1 + Yn)]− E[f(χ1 + · · ·+ χn−2 + χn−1 + χn)].

The reason to do this is that now we just need to compare each of n terms of the form

E[f(χ1 + · · ·+ χk−1 + Yk + · · ·+ Yn)]− E[f(χ1 + · · ·+ χk + Yk+1 + · · ·+ Yn)]. (28.1)

If we let
Uk = χ1 + · · ·+ χk−1 + 0 + Yk+1 + · · ·+ Yn

then the terms in 28.1 are
E[f(Uk + Yk)− f(Uk + χk)].

To estimate this, we use Taylor’s theorem:

f(x+ h) = f(x) + f ′(x)h+
1

2!
f ′′(x)h2 +

1

3!
f ′′′(x0)h3
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where x0 is some point between 0 and x. Thus, letting U = Uk, Y = Yk, and χ = χk,

f(U + Y )− f(U + χ) = f ′(U)(Y − χ) +
1

2!
f ′′(U)(Y 2 − χ2) +

1

3!
f ′′′(U0)(Y 3 − χ3)

where U0 is some (random) point between 0 and U0. Now, taking expectations, the first
two terms are

E[f ′(U)(Y − χ)] +
1

2
E[f ′′(U)(Y 2 − χ2)].

Since Uk is independent from both Yk and χk, these terms become

E[f ′(U)]E(Y − χ) + E[f ′′(U)]E(Y 2 − χ2).

But Y and χ have mean 0, so the first term is 0; also, Y and χ are both standardized, so

E(Y 2) = E

[(
Xn − µ
σ
√
n

)2
]

=
1

n

1

σ2
VarXk =

1

n
= E(χ2

k).

So both of these terms vanish! And so we have

E[f(U + Y )− f(U + χ)] =
1

3!
E
[
f ′′′(U0)(Y 3 − χ3)

]
.

Now, U0 is some random point, so we don’t know if it’s independent from Y or χ. The
best we can say is∣∣E [f ′′′(U0)(Y 3 − χ3)

]∣∣ ≤ E
[
|f ′′′(U0)|(|Y |3 + |χ|3)

]
≤ME(|Y |3 + |χ|3)

where M = maxx |f ′′′(x)|. Now, χ ∼ N(0, 1√
n
) ∼ 1√

n
N(0, 1), and so

E(|χ|2) =
1

n3/2

∫ ∞
−∞
|x|3 1√

2π
e−x

2/2dx =

√
8

π
· 1

n3/2
.

Also,

E(|Y |3) = E

[(
|Xk − µ|
σ
√
n

)3
]

=
1

σ3n3/2
E[|X1 − µ|3] =

ρ

σ3

1

n3/2
.

Putting everything together, we see that E(f(Sn) − E(f(χ)) is a sum of n terms, each of
which is

≤ 1

n3/2

M

3!

(√
8

π
+

ρ

σ3

)
.

So, adding them all up, we get

|E[f(Sn)− f(χ)]| ≤ 1

n3/2

M

3!

(√
8

π
+

ρ

σ3

)
· n.

Now, ρ1/3 = E[|X −E(X)|3]1/3 ≥ E[|X −E(X)|2]1/2 = σ, and so ρ ≥ σ3, so ρ/σ3 ≥ 1. So we
can simplify

|E[f(Sn)− f(χ)]| ≤ 1

n1/2

M

3!

(√
8

π
+ 1

)
ρ

σ3
.

This proves the theorem with C = 1
6

(
1 +

√
8
π

)
M . �


