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LASCOUX EXPANSION OF THE PRODUCT OF A LASCOUX AND A STABLE

GROTHENDIECK

GIDON ORELOWITZ AND TIANYI YU

Abstract. This paper gives a tableau formula for expanding the product of a Lascoux polynomial and a stable
Grothendieck polynomial into Lascoux polynomials. Lascoux and stable Grothendieck polynomials are inhomogeneous
analogues of key polynomials and Stanley symmetric functions, respectively. Our formula refines the K-theoretic
Littlewood-Richardson rule of Buch and extends the key expansion of key times Schur established by Haglund, Luoto,
Mason, and van Willigenburg. Our proof is combinatorial, relying heavily on a novel row insertion algorithm of Huang,
Shimozono and Yu.

1. Introduction

Fix n ∈ Z>0 throughout this paper. We consider two families of inhomogeneous polynomials. Both families have
positive integer coefficients and involve variables β, x1, · · · , xn.

• Introduced by Lascoux [Las03], the Lascoux polynomial L
(β)
α is indexed by a weak composition α, a sequence

of n non-negative integers.

• Introduced by Fomin and Kirillov [FK96], the stable Grothendieck polynomial G
(β)
w is indexed by a per-

mutation w ∈ S+, the set of permutations of Z>0 where only finitely many numbers are permuted. The

polynomial G
(β)
w involves β and x1, x2, · · · . We let G

(β)
w (x1, · · · , xn) be the polynomial obtained by setting

xn+1 = · · · = 0 in G
(β)
w .

We give a tableau formula that expands L
(β)
α ×G

(β)
w (x1, · · · , xn) into Lascoux polynomials, where the coefficients

are positive integers multiplied by a power of β. Our expansion simultaneously extends the following two results.
Both results are generalizations of the famous Littlewood-Richardson rule that gives the Schur expansion of the
product of two Schur polynomials sλ.

(1) Introduced by Demazure [Dem74], the key polynomials κα, are characters of the Borel subgroup B of upper
triangular matrices in GLn. They can be viewed as non-symmetric generalization of Schur polynomials
sλ: when α = (α1, · · · , αn) is weakly increasing, κα agrees with s(αn,··· ,α1)(x1, · · · , xn) [Dem74]. Haglund,
Luoto, Mason, and van Willigenburg [HLMvW11] established a non-symmetric refinement of the Littlewood-
Richardson rule: They expanded κα × sλ(x1, · · · , xn) into key polynomials using skyline fillings.

(2) In enumerative geometry, Schur polynomials represent Schubert classes in the cohomology ring of the Grass-

mannian. When w is a Grassmannian permutation, the stable Grothendieck polynomialG
(β)
w is the connective

K-theoretic analogue of Schur polynomials [LS82, Hud14]. Combinatorially, this means if we set β to be 0

in G
(β)
w when w is Grassmannian, we get a Schur polynomial. Buch [Buc02] established the connective K-

theoretic Littlewood-Richardson rule: a tableau formula that computes the coefficient of G
(β)
w in G

(β)
u ×G

(β)
v

for Grassmannian permutations u, v, w.

Lascoux polynomials generalize both key polynomials and G
(β)
w for Grassmannian w. If we set β to be 0 in

L
(β)
α , we get the key polynomial κα [Las03]. If α is weakly increasing, L

(β)
α agrees with G

(β)
w (x1, · · · , xn) for some

Grassmannian w [BSW20]. Therefore, the expansion we are studying is an inhomogeneous analogue of (1) and a
non-symmetric extension of (2).

When w is Grassmannian, Monical [Mon16] described a conjectural rule for this expansion involving genomic
semistandard skyline fillings. Monical’s conjecture is still open. In this paper, we establish a different combinatorial
rule for arbitrary w ∈ S+. Our rule involves increasing tableaux , fillings of Young diagrams with positive integers
such that each row and column is strictly increasing. Our rule applies a sequence of three operators to increasing
tableaux: K−(·), capn(·) and wt(·).

For a tableau T , we use Ti to denote the set of numbers that appear in column i of T . We say a tableau T is a
key if each of its column strictly increasing and T1 ⊇ T2 ⊇ · · · . Each increasing tableau P is associated with a key
called its left key, denoted as K−(P ). In Section 5.1, we give the usual definition of K−(P ) using the K-theoretic
jeu-de-taquin of Thomas and Yong [TY09]. In Section 5.2, we derive a method to compute K−(P ) using the ⊳
operator.
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2 G. ORELOWITZ AND T. YU

Take finite sets S, T ⊆ Z>0. Define T ⊳ S via the following algorithm. Go through elements in S from the largest
to the smallest. For s in S, it picks the largest number in T that is less than s and has not been picked. If such a
number exists, we put it in T ⊳ S. For instance, {1, 3, 4, 6, 7, 9} ⊳ {2, 3, 7, 8} = {1, 6, 7}. In Corollary 5.10, we show
that K−(P )j consists of P1 ⊳ P2 ⊳ · · · ⊳ Pj where the evaluation of ⊳ is from right to left.

The operator capn(·) is defined on keys with at most n rows. It replaces numbers larger than n in each column
by largest integers in [n] that are missing in that column. Then it sorts each column to make it increasing. For
instance, a column consisting of 1, 4, 6, 8, 9 will consist of 1, 3, 4, 5, 6 after cap6.

Finally, let wt(·) be the operator that sends a tableau with entries in [n] to a weak composition. The i
th

entry is
the number of i’s in the tableau.

Example 1.1. Suppose n = 3. Consider the following three increasing tableaux:

1 4 6 7

3

7

1 4 6 7

3 7

7

1 4 6 7

3 6

6 7

After applying K−(·), they become the following three keys:

1 3 3 3

3

7

1 1 3 3

3 3

7

1 1 3 3

3 3

6 6

After applying cap3(·), they become

1 3 3 3

2

3

1 1 3 3

2 3

3

1 1 3 3

2 2

3 3

Finally, we apply wt(·) and get (1, 1, 4), (2, 1, 4) and (2, 2, 4).

Each increasing tableau P is associated with a word denoted as word(P ) known as the reading word . It is obtained
by reading the entries of P from left to right, and bottom to top in each column. The three increasing tableaux
in Example 1.1 have reading words 731467, 7317467, and 63176467 respectively. Each word a is associated with a
permutation [a]H ∈ S+ defined as follows. The 0-Hecke monoid is the quotient of the free monoid of words on the
alphabet [n− 1] by the relations

ii ≡H i

i(i+ 1)i ≡H (i+ 1)i(i+ 1)

ij ≡H ji for |i− j| ≥ 2.

Let si ∈ S+ be the transposition that swaps i and i + 1. A reduced word of w ∈ S+ is a word a1a2 · · · al with
minimal length such that w = sa1

· · · aal
. We denote ℓ(w) = l. We say a is a Hecke word of w, denoted as [a]H = w,

if a ≡H b and b is a reduced word of w.

Example 1.2. We have 421433 ≡H 2143, which is a reduced word of w = s2s1s4s3. Thus [421433]H = [2143]H = w.

For a weak composition α = (α1, · · · , αn), we define |α| := α1 + · · · + αn. For a tableau P , we define |P | as the
number of cells in P . Now we can describe our main result.

Theorem 1.3. Let α be a weak composition. Take an increasing tableau P1 with wt(K−(P1)) = α. Let N be a
number such that N > n and N > max(P1). Suppose w ∈ S+ fixes 1, 2, · · · , N . Then

L
(β)
α ×G(β)

w (x1, · · · , xn) =
∑

P

β|P |−ℓ(w)−|α|
L
(β)
wt(capn(K−(P ))),(1.1)

where the sum is over all increasing tableau P which has at most n rows and satisfies the following.

• If we ignore entries of P that are larger than N , we get P1.
• If we ignore all entries smaller than N in word(P ), we get a Hecke word for w.

We explain why Theorem 1.3 gives the Lascoux expansion of L
(β)
α × Gw(x1, · · · , xn) for arbitrary weak com-

position α and w ∈ S+. First, we can always find increasing tableau P1 with wt(K−(P1)) = α for any α: If
α = (α1, · · · , αn), we may let P1 be the increasing tableau whose column c consists of {αi + c − 1 : αi ≥ c}. Next,
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a fact is G
(β)
w (x1, · · · , xn) = G

(β)
1N×w(x1, · · · , xn), where 1N × w sends i to w(i − N) + N for all i > N and fixes

1, 2, · · · , N . This fact can be deduced from (2.3). Thus, we may replace w by 1N × w, so w satisfies the conditions
in Theorem 1.3.

Example 1.4. Say we would like to expand L
(β)
α × G

(β)
w (x1, · · · , xn) into Lascoux polynomials where α = (1, 0, 2),

n = 3 and w has one-line notation 321. We may let P1 be

P1 =
1 4

3

so that K−(P1) = (1, 0, 2). Then we may pick N = 5, so that N > max(P1) and N > n. We may redefine w as the

permutation with one-line notation 12345876. This replacement does not change G
(β)
w . Then the three increasing

tableaux in Example 1.1 satisfy the conditions of Theorem 1.3. They contribute L
(β)
(1,1,4), βL

(β)
(2,1,4) and β2

L
(β)
(2,2,4) to

the expansion. In Appendix A, we enumerate all increasing tableaux that satisfy the conditions for this example.

Remark 1.5. After setting β = 0, L
(β)
α becomes κα and G

(β)
w (x1, · · · , xn) becomes Fw(x1, · · · , xn), the Stanley

symmetric function [Sta84] in variables x1, · · · , xn. By setting β = 0 in (1.1), we have:

κα × Fw(x1, · · · , xn) =
∑

P

κwt(capn(K−(P ))),(1.2)

where the sum is over all increasing tableau P such that

• If we ignore entries of P that are larger than N , we get P1.
• If we ignore all entries smaller than N in word(P ), we get a reduced word for w.

When w is Grassmannian, Fw(x1, · · · , xn) is a Schur polynomial in x1, · · · , xn. Thus, our result restricts to a
tableau formula for the key expansion of κα × sλ(x1, · · · , xn). We do not have a bijection between our tableaux and
skyline fillings in [HLMvW11].

Our approach relies on combinatorial formulas of G
(β)
w and L

(β)
α . Fomin and Kirillov established a combinatorial

formula of G
(β)
w via compatible pairs, certain pairs of words. Buciumas, Scrimshaw, and Weber [BSW20] established

a formula for Lascoux polynomials involving reverse set-valued tableaux (RSVT). Our main tool is an insertion
algorithm developed by Huang, Shimozono and Yu [HSY22]. This algorithm is a row insertion analogue of Hecke
column insertion [BKS+08]. It gives a bijection between compatible pairs and the set of (P,Q) where P is an
increasing tableau and Q is a RSVT of the same shape. In Theorem 3.1, we show this row insertion satisfies an
analogous property of Hecke column insertion established in [SY23, Theorem 4.2]. This property allows us to turn

the tableau formula of L
(β)
α into a compatible pair formula. Then both sides of Theorem 1.3 can be viewed as a sum

of certain compatible pairs. Finally, we establish bijections between the compatible pairs representing the two sides.

Remark 1.6. In [SY23], the authors established Theorem 4.2 for Hecke column insertion under the convention that
the insertion tableau is a decreasing tableau. The analogous property would not hold for Hecke column insertion of
increasing tableaux. However, we do not have a way to state Theorem 1.3 using decreasing tableaux. Moreover, our
main argument would not work for decreasing tableaux (see Remark 3.4). Thus, we chose to use the row insertion
of Huang, Shimozono and Yu [HSY22] on increasing tableaux.

Lastly, a by-product of Theorem 3.1 is the Lascoux expansion of Grothendieck polynomials. This expansion was
first conjectured by Reiner and Yong [RY21] and proved by Shimozono and Yu [SY23]. The proof in [SY23] uses
Hecke column insertion on decreasing tableaux while our proof uses the row insertion on increasing tableaux.

The rest of the paper is organized as follows. In §2, we cover some necessary background. In §3, we state
Theorem 3.1 and use it to prove Theorem 1.3. The rest of the paper aims to prove Theorem 3.1. In §4, we introduce
and investigate the operator ⊳. In §5, we define the left key of increasing tableaux and give a simple way to compute
it using ⊳. In §6, we describe and study the insertion algorithm of Huang, Shimozono and Yu. Then we prove
Theorem 3.1.

2. Background

In this section, we first introduce the two main players of this paper: stable Grothendieck polynomials and Lascoux
polynomials. Instead of providing their usual definitions in the literature, we describe combinatorial formulas to
compute them. Finally, we briefly describe the reverse row insertion and leave the details to §6.
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2.1. Stable Grothendieck polynomials and compatible pairs. The stable Grothendieck polynomial can be
computed using compatible pairs.

Definition 2.1. [BJS93] Let a = a1 · · ·am and i = i1 · · · im be two words of the same length. We say (a, i) is a
compatible pair if

• i is weakly increasing, and
• ij = ij+1 implies aj > aj+1.

We say the compatible pair (a, i) is bounded if ij ≤ aj for all j ∈ [m].

Let C be the set of all compatible pairs. Let Cb be the set of bounded compatible pairs. Let Cw (resp. Cb
w) be the

set of (a, i) ∈ C (resp. Cb) such that a is a Hecke word of w.

Example 2.2. The pair (421433, 111224) is compatible and thus in C. This pair is not bounded since the last number
in the first word is smaller than the last number in the second word. On the other hand, (421433, 111223) is bounded.

For a word i, let ℓ(i) be its length and let wt(i) be a sequence where the jth entry is the number of times j appears
in i. For a sequence of numbers (c1, c2, · · · ) with only finitely many non-zero entries, we use x(c1,c2,··· ) to denote the
monomial where the power of xi is ci,

Definition 2.3. [FK96] The Grothendieck polynomial G
(β)
w and the stable Grothendieck function G

(β)
w can be defined

as:

G
(β)
w =

∑

(a,i)∈Cb
w−1

βℓ(a)−ℓ(w)xwt(i)(2.1)

G(β)
w =

∑

(a,i)∈C
w−1

βℓ(a)−ℓ(w)xwt(i).(2.2)

Example 2.4. Consider w with one-line notation 31524. Then w−1 has one-line notation 24153. We know [421433]H =

w−1 and (421433, 111223) is bounded, so this pair is in Cb
w−1 . It would contribute β2x3

1x
2
2x3 to G

(β)
w and G

(β)
w .

Notice that the stable Grothendieck function generally involves an infinite set of variables x1, x2, · · · and has

infinitely many terms. One main player of this paper is G
(β)
w (x1, · · · , xn), which is obtained from G

(β)
w by setting

xn+1 = · · · = 0. Clearly,

G(β)
w (x1, · · · , xn) =

∑

(a,i)∈C≤n

w−1

βℓ(a)−ℓ(w)xwt(i),(2.3)

where C≤nw := {(a, i) ∈ Cw : entries of i are at most n}.

2.2. Lascoux polynomials and tableaux. A weak composition is a sequence of n non-negative integers. For a
weak composition α, we use αi to denote its ith entry. We also define xα as the monomial xα1

1 · · ·xαn
n and define

|α| :=
∑n

i=1 αi.

For a weak composition α, Lascoux [Las03] defined the Lascoux polynomial L
(β)
α ∈ Z≥0[β][x1, · · · , xn]. We define

L
(β)
α using a tableaux formula of Buciumas, Scrimshaw and Weber [BSW20]. It generalizes a classical tableau formula

of key polynomials found by Lascoux and Schützenberger [LS88].
A partition is a weakly decreasing sequence of positive numbers. The Young diagram of a partition λ =

(λ1, . . . , λm) is the set {(r, c) : c ≤ λr}. We represent a Young diagram by drawing a cell in row r column c
for each (r, c) in the set under the English convention: Row 1 is the topmost row and column 1 is the leftmost
column. A tableau is a filling of a Young diagram. For a tableau T , we use T (r, c) to denote its filling in the cell
(r, c). The shape of T , denoted as shape(T ), is the underlying Young diagram of T . We say (r, c) is a cell in T if
(r, c) is in shape(T ).

In this paper, usually, we fill each cell by Z>0 or subsets of Z>0. When T is a tableau filled by [n], we let wt(T )
be the weak composition whose ith entry is the number of (r, c) in T such that T (r, c) = i. When T is a tableau
filled by subsets of [n], we let wt(T ) be the weak composition whose ith entry is the number of (r, c) in T such that
i ∈ T (r, c).

We define Lascoux polynomials using tableaux. A reverse semi-standard Young tableau (RSSYT) is a filling of the
Young diagramwith [n]. We require every row (resp. column) to be weakly (resp. strictly) decreasing from left to right
(resp. top to bottom). A reverse set-valued tableau (RSVT) is a filling of the Young diagram with non-empty subsets
of [n]. Moreover, for two horizontally adjacent cells (r, c) and (r, c+ 1), we require min(T (r, c)) ≥ max(T (r, c+ 1)).
For two vertically adjacent cells (r, c) and (r + 1, c), we require min(T (r, c)) > max(T (r + 1, c)). For an RSVT T ,
let L(T ) be the tableau obtained by keeping only the largest number in each entry of T . Clearly, L(·) is a map from
RSVTs to RSSYTs.
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Example 2.5. For the following RSVT T , we compute L(T ).

T =

6 53 3 321

4 21 1

32

, L(T ) =

6 5 3 3

4 2 1

3

.

When writing an entry in a RSVT, we simply list its elements in decreasing order. For instance, the “6” in cell (1, 1)
represents T (1, 1) = {6} and “321” in cell (1, 4) represents T (1, 4) = {3, 2, 1}.

Lascoux polynomials can be written as sums over RSVTs. To describe which RSVTs can appear in a sum, we need
a few more definitions. Recall a key is a tableau where each column is increasing and numbers in one column also
appear in the column to the left. There is a natural bijection, denoted as key(·), that sends a weak composition to a
key with entries in [n]. For a weak composition α, key(α) is the unique key whose column c consists of {i : αi ≥ c}.
Its inverse is just wt(·).

Example 2.6. Let α = (2, 1, 4, 0, 2).Then

key(α) =

1 1 3 3

2 3

3 5

5

.

Each RSSYT T is associated with a key called its left key, denoted as K−(T ). The left key is originally defined
via moves on RSSYT known as jeu-de-taquin. We present one simple method to compute the left key, which is a
reformulation of Willis’ algorithm [Wil13], using an operation on sets.

Definition 2.7 ([SY23, Definition 3.11]). Take finite sets S, T ⊆ Z>0. Define T D S be the set computed as follows.
Iterate through elements of S from the smallest to the largest. For each s ∈ S, it picks the smallest t ∈ T such that
t ≥ s and t has not been picked. Then T D S is the set of all picked t ∈ T .

For instance, {1, 4, 5, 6, 7} D {2, 3, 7} = {4, 5, 7}, since 2 picks 4, 3 picks 5 and 7 picks 7.

Definition 2.8. For a RSSYT T , its left key K−(T ) is the key whose column i consists of

T1 D (T2 D (· · · (Ti−1 D Ti) · · · )).

Example 2.9. Let T be the following RSSYT:

T =

6 5 3 3

4 2 1

3

.

Then column 1 of K−(T ) consists of T1 = {3, 4, 6}. Column 2 of K−(T ) consists of T1 D T2 = {3, 6}. Column 3 of
K−(T ) consists of T1 D (T2 D T3) = {3, 6}. Column 4 of K−(T ) consists of T1 D (T2 D (T3 D T4)) = {6}. Thus,

K−(T ) =

3 3 3 6

4 6 6

6

.

Definition 2.10. We define the Lascoux polynomial L
(β)
α using a tableau formula [BSW20]:

(2.4) L
(β)
α =

∑

RSVT T
K−(L(T ))≤key(α)

β|wt(T )|−|α|xwt(T ).

Example 2.11. When α = (0, 2, 1), the following are all the RSVT that contribute to L
(β)
α :

3 2

2
, 2 2

1
, 3 1

2
, 2 1

1
, 3 1

1

3 2

21
, 3 21

2
, 2 21

1
, 32 1

1
, 3 1

21
, 3 21

21
.

Thus, L
(β)
α = x2

2x3 + x1x
2
2 + x1x2x3 + x2

1x2 + x2
1x3 + β(2x1x

2
2x3 + x2

1x
2
2 + 2x2

1x2x3) + β2x2
1x

2
2x3.
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2.3. Row insertion algorithm. The main tool of this paper is an insertion algorithm of Huang, Shimozono and
Yu [HSY22]. We adopt a slightly different convention: They described the insertion algorithm on decreasing tableaux
but we describe it on increasing tableaux.

Let T be the set of pairs of tableaux (P,Q), where P is increasing, Q is RSVT and shape(P ) = shape(Q). For
w ∈ S+, let Tw be the the set {(P,Q) ∈ T : [rev(word(T ))]H = w} where rev(·) reverses a word.

In [HSY22], Huang, Shimozono and Yu described a map Ψ : T → C which relies on a row insertion algorithm. We
postpone the technical definition of this map to §6. For now, we just need the following result.

Theorem 2.12. [HSY22, Corollary 5.9] The map Ψ is a bijection from Tw to Cw that preserves the weight of the
second entry. In other words, Ψ is a bijection from T to C such that if Ψ(P,Q) = (a, i), then [rev(word(P ))]H ≡H [a]H
and wt(Q) = wt(i).

We also need the following statement which we will prove in Section 6.1.

Lemma 2.13. Take (A, I) ∈ C and let N be an integer that does not appear in A. Let a be the word obtained by
removing all numbers larger than N in A. Suppose Ψ−1(A, I) = (P,Q) and Ψ−1(a, i) = (p, q) for some i such that
(a, i) ∈ C. Then after removing all numbers larger than N in P , we obtain p.

3. Proof of Theorem 1.3

Our proof approach requires a technical lemma which describes the preimage of Cb
w under Ψ. Let T b be the set of

(P,Q) ∈ T such that K−(P ) ≥ K−(Q) where the comparison is entry-wise. Define T b
w as the intersection of T b and

Tw.

Theorem 3.1. The map Ψ is a bijection from T b to Cb, so it is a bijection from T b
w to Cb

w for any w ∈ S+.

In this section, we use Theorem 3.1 to prove Theorem 1.3. The proof of Theorem 3.1 will be the goal of all
remaining sections.

First, we study the capn(·) operator defined in §1. Let T be a key with at most n rows. Notice that a number i
is in capn(T )c if and only if i ∈ Tc or |Tc ∩ (i,∞)| > n− i. Then we have the following property:

Lemma 3.2. Let T be a key with at most n rows. Then capn(T ) is also a key. Moreover, if T ′ is another key,
capn(T ) ≥ T ′ if and only if T ≥ T ′ and max(T ′) ≤ n.

Proof. Assume i ∈ capn(T )c for some c > 1. Then i ∈ Tc or |Tc∩(i,∞)| > n− i, so i ∈ Tc−1 or |Tc−1∩(i,∞)| > n− i.
We have i ∈ capn(T )c−1, so capn(T ) is a key.

Assume capn(T ) ≥ T ′. We know entries of capn(T ) are at most n, so max(T ′) ≤ n. Also, T ≥ capn(T ) ≥ T ′.
Now assume T ≥ T ′ and max(T ′) ≤ n. Consider an arbitrary column Tc with m entries. If Tc(i) = capn(T )c(i),

we clearly have capn(T )c(i) ≥ T ′c(i). If Tc(i) > capn(T )c(i), we know capn(T )c(i), · · · , capn(T )c(m) are exactly
n−m+ i, · · · , n. Since max(T ′) ≤ n, we have T ′c(m) ≤ n so T ′c(i) ≤ n−m+ i = capn(T )c(i). �

Corollary 3.3. For an key T with at most n rows, we have
∑

RSVT Q:K−(L(Q))≤T,max(Q)≤n

β|wt(Q)|−|wt(T )|xwt(Q) = L
(β)
wt(capn(T )).

Proof. Just need to check the Q we sum over are precisely all Q such that K−(L(Q)) ≤ capn(T ). Notice that
max(Q) ≤ n is equivalent to max(L(Q)) ≤ n, which is equivalent to max(K−(L(Q))) ≤ n. Then the proof is finished
by Lemma 3.2. �

Now we prove our main result.

Proof of Theorem 1.3. Observe that the second condition of P is the same as saying [word(P )]H is a permutation
that agrees with w after N .

Define

T1 = {(P,Q) ∈ T b : P = P1} and C1 := Ψ(T1).

By Theorem 3.1, C1 ⊂ Cb. Let C2 denote C≤nw . Since we assume w fixes 1, · · · , N and N > n, we know C2 ⊆ Cb.
Now by (2.4) and (2.3), we have

L
(β)
α =

∑

(P,Q)∈T1

β|wt(Q)|−|α|xwt(Q) =
∑

(a,i)∈C1

β|wt(i)|−|α|xwt(i), and

G(β)
w (x1, · · · , xn) =

∑

(b,j)∈C2

β|wt(j)|−ℓ(w)xwt(j).
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Let T3 be the set of (P,Q) ∈ T b such that P satisfies the condition in the Theorem and max(Q) ≤ n. Let C3 = Ψ(T3),
so C3 ⊂ Cb. By Corollary 3.3, the right hand side of (1.1) becomes

∑

(c,k)∈C3

β|wt(k)|−ℓ(w)−|α|xwt(k).

It remains to build a bijection between C1 × C2 and C3 such that if (a, i), (b, j) 7→ (c, k), then wt(i) + wt(j) =
wt(k). Given (a, i) ∈ C1 and (b, j) ∈ C2, numbers in a are smaller than N while numbers in b are larger than
N . There is a unique way to “shuffle” them and obtain an element of C. More explicitly, there exists a unique
(c, k) = (c1 . . . cm, k1 · · · km) ∈ C such that if we let S = {s : cs < N} and T = {t : ct > N} then

(a, i) = (cS(1) · · · cS(|S|), kS(1) · · · kS(|S|)) and (b, j) = (cT (1) · · · cT (|T |), kT (1) · · · kT (|T |)).

Now we check such (c, k) is in C3. Since (a, i), (b, j) ∈ Cb, so is (c, k). Let (P,Q) = Ψ−1(c, j). By Theorem 3.1,
Ψ−1(c, j) ∈ T b. Clearly, max(Q) = max(k) ≤ n, which also implies Q and P have at most n rows. It remains to
check P satisfies the two conditions in the Theorem:

• If we only look at numbers in c that are smaller than N , we get a. By Lemma 2.13, if we only look at entries
in P that are smaller than N , we get P1.

• If we only look at numbers in c that are smaller thanN , we get b, a Hecke word ofw. Thus, [word(P1)]H = [c]H
is a permutation that agrees with w after N .

Now we describe the inverse of the bijection above. Take (c, k) ∈ C3. Let S = {s : cs < N} and T = {t : ct > N}
and define

(a, i) = (cS(1) · · · cS(|S|), kS(1) · · · kS(|S|)) and (b, j) = (cT (1) · · · cT (|T |), kT (1) · · · kT (|T |)).

It remains to check (a, i) ∈ C1 and (b, j) ∈ C2. By (c, k) ∈ Cb, we know so are (a, i) and (b, j). By Lemma 2.13, we
know Ψ(a, i) = (P1, Q) for some Q, so (a, i) ∈ C1. Since b is obtained from c by looking at numbers larger than N ,
[b]H agree with [c]H after N and fixes 1, 2, · · · , N . The condition of C3 guarantees that [c]H agrees with w after N .
Thus, [b]H = w, so (b, j) ∈ C2. �

Remark 3.4. We explain why our argument works on increasing tableaux but not decreasing tableaux. In a decreasing
tableau, numbers will be decreasing in each column and row. If we ignore numbers larger than a given number, we
might not get a tableau of partition shape.

4. The ⊳ operator

In this section, we define and study an operator ⊳. In the next section, we will use this operator to give a simple
algorithm that computes K−(P ) of an increasing tableau P .

In the rest of this paper, we use S, T, U to denote finite subsets of Z>0. Given a set S, let S(i) be the ith smallest
element of S for i ∈ [|S|]. Clearly, if S ⊆ T , then S(i) ≥ T (i) for all i ∈ [S]. Also, given x ∈ S, we use S − x to
denote the set S \ {x}. Similarly for x 6∈ S, we use S ⊔ x to denote the set S ⊔ {x}. We evaluate these expressions
from left to right. For instance, S ⊔ x− y = (S ⊔ x)− y.

Now we define the ⊳ operator in two different, but clearly equivalent, ways.

Definition 4.1. Define T ⊳ S as follows:

• Recursive definition: If s ≤ t for all s ∈ S and t ∈ T (including when this is vacuously true, if S = ∅ or
T = ∅), T ⊳ S = ∅. Otherwise, max(S) > min(T ). Let m = max(T<max(S)) and define

T ⊳ S := m ⊔ (T<m ⊳ (S −max(S))).

• Non-recursive definition: We compute T ⊳ S via the following process. We initialize T ⊳ S as the empty set
and go through elements in S from the largest to the smallest. For s in S, it picks the largest number in T
that is less than s and has not been picked. If such a number exists, we put it in T ⊳ S.

We use the recursive definition in proofs by induction and the non-recursive algorithm in other proofs.

Example 4.2. We have

{1, 3, 4, 6, 7, 9} ⊳ {2, 3, 7, 8} = {1, 6, 7}, {1, 3, 4, 6, 7, 9} ⊳ {2, 4, 7, 8} = {1, 3, 6, 7}.

Observe as well that the ⊳ operation is not associative, as

({1, 2} ⊳ {2, 3}) ⊳ {3} = {1, 2} ⊳ {3} = {2} but {1, 2} ⊳ ({2, 3} ⊳ {3}) = {1, 2} ⊳ {2} = {1}.

Because of this, whenever there is ambiguity of the order of evaluation we assume that the expression is evaluated
from right-to-left, so {1, 2} ⊳ {2, 3} ⊳ {3} = {1}.
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We now study the ⊳ operator from various aspects and develop some technical lemmas that will be used in future
sections.

4.1. Understanding (T − x)⊳ S. For x ∈ T , we would like to understand how (T − x) ⊳ S differs from T ⊳ S. We
start with an easy special case:

Lemma 4.3. If x ∈ T \ (T ⊳ S), then (T − x) ⊳ S = T ⊳ S.

Proof. Prove by induction on |S|. If |S| = 0, we are done. Now assume that the statement is proved whenever
|S| = k − 1, and let |S| = k. If max(S) ≤ min(T ), then max(S) ≤ min(T − x) as well, and so (T − x) ⊳ S =
T ⊳ S = ∅ and we are done. Otherwise, let m = max(T<max(S)). By definition, m ∈ T ⊳ S, so m 6= x and
m = max((T − x)<max(S)) as well. Notice that (T − x)<m is either T<m or T<m − x. In either case, we have
(T − x)<m ⊳ (S −max(S)) = T<m ⊳ (S −max(S)) by the inductive hypothesis. Thus,

(T − x) ⊳ S = m ⊔ ((T − x)<m ⊳ (S −max(S))) = m ⊔ (T<m ⊳ (S −max(S))) = (T − x) ⊳ S. �

This Lemma allows us to remove certain elements from T without changing T .

Corollary 4.4. Let T ′ ⊆ T such that T ⊳ S ⊆ T ′. Then T ⊳ S = T ′ ⊳ S.

Proof. This follows from repeated application of Lemma 4.3. �

Now we analyze the harder case: x ∈ T ⊳ S.

Lemma 4.5. Take x ∈ T ⊳ S. If T<x \ (T ⊳ S) is empty, then (T − x)⊳ S = (T ⊳ S)− x. Otherwise, (T − x)⊳ S =
(T ⊳ S)− x ⊔ x′, where x′ = max(T<x \ (T ⊳ S)).

Proof. Let i be such that T (i) = x. Find smallest i′ such that for any i′ ≤ j ≤ i, T (j) ∈ T ⊳ S. Notice that i′ > 1 if
and only if T<x \ (T ⊳ S) is not empty. In this case, T (i′ − 1) = x′.

Consider the non-recursive way to compute T ⊳ S and (T − x) ⊳ S. If x = T (i) is picked by some s ∈ S when
computing T⊳S, then s would pick T (i−1) instead when computing (T−x)⊳S. Inductively, for j = i, i−1, · · · , i′+1,
if s ∈ S picks T (j) when computing T ⊳S, s would pick T (j − 1) instead when computing (T − x)⊳ S. If i′ = 1, we
have (T − x)⊳ S = T ⊳ S − x and we are done. Otherwise, when s ∈ S picks T (i′) when computing T ⊳ S, s would
pick T (i′ − 1) = x′ instead when computing (T − x) ⊳ S. After that, the computations of T ⊳ S and (T − x) ⊳ S
behave the same. �

4.2. Domination. Clearly, |T ⊳ S| ≤ |S|. In Example 4.2, we see sometimes |T ⊳ S| < |S|. We would like to
understand when T ⊳ S has the same size as S. This motivation brings us to the following notion:

Definition 4.6. If |T | ≥ |S| and T (i) < S(i) for all i ∈ [|S|], we say that S dominates T and write T � S.

An alternate characterization for dominance is that S1 � S2 � · · · � S+ if and only if there exists an n-column
increasing tableau of normal shape with column i consisting of the numbers in Si. From this perspective, it is clear
that if T � S and S′ ⊆ S, then T � S′. Notice that � is transitive, but it is not irreflexive since ∅ � ∅.

This notion characterizes when T ⊳ S has the same size as S:

Lemma 4.7. We have |T ⊳ S| = |S| if and only if T � S.

Proof. Prove by induction on |S|. If |S| = 0, then S = ∅ and T ⊳ ∅ = ∅. Correspondingly, we have T � ∅.
Now assume that the statement is true when |S| = k−1, and say that |S| = k for some k ≥ 1. If max(S) ≤ min(T ),

then T ⊳ S = ∅ and we cannot have T � S, completing the proof in this case. Otherwise, max(S) > min(T ). Let
m = max(T<max(S)), so T ⊳ S = m ⊔ (T<max(S) ⊳ (S −max(S))). By the inductive hypothesis, we deduce:

|T ⊳ S| = k ⇔ |T<max(S) ⊳ (S −max(S))| = k − 1

⇔ T<max(S) � (S −max(S))

⇔ |T<max(S)| ≥ k − 1, and for each i ∈ [k − 1], T<max(S)(i) ≤ S(i)

⇔ |T | ≥ k, and for each i ∈ [k], T (i) ≤ S(i)

⇔ T � S. �

We are mainly interested in T ⊳ S when T � S. In this case, |T ⊳ S| = |S|. If we consider the non-recursive way
to compute T ⊳ S, when S(i) picks a number in T , we know it is (T ⊳ S)(i). Thus, we can use the non-recursive
definition to study T ⊳ S. We first show that T ⊳ S has an entry-wise upper bound.

Corollary 4.8. If T � S, then T ⊳ S � S.
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Proof. Since T � S, |S| = |T ⊳ S|, so |S| ≤ |T ⊳ S|. Using the non-recursive definition of ⊳, the number S(i) picks
someone that is smaller than S(i), so (T ⊳ S)(i) < S(i), completing the proof. �

Using Corollary 4.8, we deduce a simple result that allows us to understand the small numbers in T ⊳ S in certain
cases.

Lemma 4.9. Assume T � S. Take x such that |T<x| = |S≤x|. Then for any j ≤ |T<x|, we have (T ⊳ S)(j) = T (j).

Proof. Let i = |T<x|. If i = 0, our statement is trivial. Now assume i > 0. By T � S and Corollary 4.8,
(T ⊳S)(i) < S(i) ≤ x, so there are at least i numbers in T ⊳S that are less than x. There are exactly i such numbers
in T , so they are all in T ⊳ S. In other words, for any j ∈ [i], (T ⊳ S)(j) = T (j). �

Corollary 4.10. Assume T � S and there exists x 6∈ S such that |S<x| = |T<x|. Take y ∈ S such that x > y and
let S′ = (x ⊔ S)− y. Then T � S′ and for all i such that S(i) < x, (T ⊳ S)(i) = (T ⊳ S′)(i) = T (i).

Proof. For each i ∈ [|S|], we have T (i) < S(i) ≤ S′(i). Thus, T � S′. Notice that |S≤x| = |S′≤x| = |T<x|. Then the
lemma is finished by Lemma 4.9. �

Using results from the previous section, we can get another lower bound of T ⊳ S involving (T − x)⊳ S.

Lemma 4.11. Assume T � S. Take any x ∈ T such that T −x � S. Then (T ⊳S)(i) ≥ ((T −x)⊳S)(i) for i ∈ [|S|].

Proof. If x 6∈ T ⊳ S, then by Lemma 4.3 T ⊳ S = (T − x) ⊳ S, and the statement is true. Thus, we assume x ∈ T ⊳ S.
Let x′ ∈ T be the largest such that x′ < x and x′ /∈ T ⊳ S. It x′ does not exist, by Lemma 4.5,

|(T − x) ⊳ S| = |(T ⊳ S)− x| < |S|.

By Lemma 4.7 and (T − x) � S, we cannot have |(T − x) � S| < |S|. Thus, x′ must exist. By Lemma 4.5
(T − x)⊳ S = (T ⊳ S)− x ⊔ x′. Our statement is proved since x′ < x. �

We end this section with a proposition that allows us to “split” the computation of T ⊳ S.

Proposition 4.12. Find x such that T≥x � S>x. Then

T ⊳ S = (T<x ⊳ S≤x) ⊔ (T≥x ⊳ S>x)

Proof. Consider the non-recursive way of computing T ⊳ S and (T≥x ⊳ S>x). Since T≥x � S>x, s ∈ S>x will pick the
same t ∈ T≥x in both computations.

Now consider the computation of T ⊳S. After every s ∈ S>x picks, the non-picked numbers in T are T<x together
with some numbers at least x. When the next s ∈ S picks, we know s ≤ x, so it will only pick numbers from T<x.
Starting from here, the computation behaves the same as if computing T<x ⊳ S≤x. �

Corollary 4.13. Find x ∈ T such that T≥x+1 � S>x+1 and x+ 1 /∈ S. Then x /∈ T ⊳ S.

Proof. By Proposition 4.12, T ⊳ S = (T<x+1 ⊳ S≤x+1) ⊔ (T≥x+1 ⊳ S>x+1). Clearly x is not in the second term. By
x+ 1 /∈ S, x is not in the first term either. �

4.3. Comparing T ⊳ S′ and T ⊳ S when S′ ⊆ S. We start with a simple property.

Lemma 4.14. For S′ ⊆ S, we have T ⊳ S′ ⊆ T ⊳ S.

Proof. Prove by induction on |S|. If |S| = 0, then S = S′ = ∅, so T ⊳ S′ = ∅ = T ⊳ S.
Now assume that the statement is true whenever |S| = k − 1, and consider an arbitrary S such that |S| = k. If

max(S) ≤ min(T ), then T ⊳ S′ = T ⊳ S = ∅ and we are done. Otherwise, let m = max(T<max(S)). If m ∈ S′, by the
inductive hypothesis,

T ⊳ S′ = m ⊔ (T<m ⊳ (S′ −m)) ⊆ m ⊔ (T<m ⊳ (S −m)) = T ⊳ S.

Otherwise, m /∈ S′. We have S′ ⊆ (S−m). Notice that T ⊳S ⊆ T<m. By Corollary 4.4 and the inductive hypothesis,

T ⊳ S′ = T<m ⊳ S′ ⊆ (T<m ⊳ (S −m)) = T ⊳ S.

�

By Lemma 4.14, when T � S, T ⊳ (S − a) will be T ⊳ S with one element removed. For certain a, we can figure
out which element of T ⊳ S is removed.

Lemma 4.15. Assume T � S and take S′ ⊂ S. If a = min(S \ S′) and b = min((T ⊳ S) \ (T ⊳ S′)), then
T ⊳ (S − a) = (T ⊳ S)− b



10 G. ORELOWITZ AND T. YU

Proof. Since S−a and S′ are subsets of S, by Lemma 4.14, T ⊳(S−a) and T ⊳S′ are subsets of T ⊳S. By Corollary 4.4,
we may replace T by T ⊳ S. This change does not affect T ⊳ S, T ⊳ (S − a) and T ⊳ S′.

By Lemma 4.7, |T ⊳ S| = |S| = 1+ |S − a| = 1+ |T ⊳ (S − a)|. By Lemma 4.14 we have that T ⊳ (S − a) ⊆ T ⊳ S.
Thus, (T ⊳ S) \ (T ⊳ (S − a)) contains only one element, which we denote as x. It suffices to show that x = b. Let
x = T (i). It remains to check: x /∈ T ⊳ S′ and T (j) ∈ T ⊳ S′ for any j ∈ [i− 1].

• Since x /∈ T ⊳ (S − a) and S′ ⊆ S − a, by Lemma 4.14, x /∈ T ⊳ S′.
• On one hand, we have S(i) > T (i) = x. On the other hand, consider the non-recursive way to compute

T ⊳ (S−a). When (S−a)(i−1) picks T (i−1), x has not been picked. Thus, (S−a)(i−1) ≤ x. In particular,
S(i) > (S − a)(i− 1), so S(i) ≤ a and (S − a)(i− 1) = S(i− 1).

Now we have |S≤x| = i − 1. By the definition of a, S(i) ≤ a implies that S(1), · · · , S(i − 1) ∈ S′, so
|S′≤x| = i− 1 = |T<x|. By Lemma 4.9, (T ⊳ S′)(j) = T (j) for j ∈ [i− 1].

�

4.4. Understanding U ⊳ T ⊳ S. The main goal of this section is to prove the following technical lemma:

Lemma 4.16. Suppose U � T � S. Assume that there exists x 6∈ T such that |U<x| = |T<x|. Assume there exists
y ∈ T<x such that T ⊔ x− y � S. Take the smallest such y, then

U ⊳ T ⊳ S′ = U ⊳ (T ⊔ x− y) ⊳ S′

where S′ is any subset of S. Consequently,

U ⊳ T = U ⊳ (T ⊔ x− y).

To prove this Lemma, we consider three sets:

U ⊳ T ⊳ S′, U ⊳ (T ⊔ x)⊳ S′, U ⊳ (T ⊔ x− y)⊳ S′.(4.1)

The goal is to show the first set equals the last set in (4.1. We first derive a lemma that implies the last two agree.

Lemma 4.17. Assume T � S and |T | > |S|. Let y ∈ T be the smallest such that (T − y) � S. Then

• For all T (j) < y, (T ⊳ S)(j) = T (j).
• We have y /∈ T ⊳ S.
• For any S′ ⊆ S, (T − y) ⊳ S′ = T ⊳ S′.

Proof. Let i be such that y = T (i).

• If i = 1, then y = min(T ), and the first statement is vacuously true. Now assume that i > 1. By the definition
of y, T − T (i) � S, but T − T (i − 1) 6� S. Thus, T (i) ≥ S(i − 1). In other words, |S≤y| = i − 1 = |T<y|.
Then the first statement follows from Lemma 4.9.

• By the first statement, for all j < i, (T ⊳ S)(j) = T (j) < T (i) = y. For all j ≥ i, Lemma 4.11 says that
(T ⊳ S)(j) ≥ ((T − y) ⊳ S)(j) ≥ (T − y)(j) = T (j + 1) > T (i) = y. Therefore, for all j, (T ⊳ S)(j) 6= y, so
y 6∈ T ⊳ S.

• By Lemma 4.14, T ⊳ S′ ⊆ T ⊳ S. By the second statement, y 6∈ T ⊳ S, so y 6∈ T ⊳ S′. By Lemma 4.3,
(T − y) ⊳ S′ = T ⊳ S′.

�

To show the first two sets in (4.1) agree, we need the following two lemmas:

Lemma 4.18. Suppose |U | ≤ |T |. Let δ = |U | − |T |. Suppose for each i ∈ [|U |], U(i) ≤ T (i+ δ). Take x such that
x > max(T ).

• We have U ⊳ (T ⊔ x) = U ⊳ T = T .
• For any T ′ ( T , let x′ = max(T \ T ′). Then U ⊳ (T ′ ⊔ x) = U ⊳ (T ′ ⊔ x′).

Proof. The first statement is immediate. For the second statement, assume x′ = T (i). We know T (|T |), · · · , T (i+
1) ∈ T ′. Consider the non-recursive way to compute U ⊳ (T ′ ⊔ x) and U ⊳ (T ′ ⊔ x′). In the first process, clearly,
x, T (|T |), · · · , T (i+1) would pick U(|U |), U(|U |− 1) · · · , U(i− δ). In the second process, T (|T |), · · · , T (i) would also
pick U(|U |), · · · , U(i− δ). After that, the two processes have the same behavior. �

Lemma 4.19. Assume we can find x /∈ T such that U≥x � T>x and |U<x| ≤ |T<x|. Let δ = |T<x| − |U<x|. Assume
for any i ∈ [|U<x|], U(i) ≤ T (i+ δ). Then U ⊳ T ⊳ S = U ⊳ (T ⊔ x)⊳ S for any set S.
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Proof. Suppose x /∈ (T ⊔ x)⊳ S. By Lemma 4.3, (T ⊔ x)⊳ S = T ⊳ S so our claim is trivial.
Otherwise, let T ′ = (T ⊔ x)⊳ S. Since U≥x � T>x, we have U≥x � T ′>x. By Proposition 4.12,

U ⊳ T ′ = U<x ⊳ T ′≤x ⊔ U≥x � T ′>x.(4.2)

By Lemma 4.5, (T ⊳ S)>x = T ′>x. Thus, (4.2) still holds if we replace T ′ by T ⊳ S. To show U ⊳ T ′ = U ⊳ (T ⊳ S),
it remains to check:

U<x ⊳ T ′≤x = U<x ⊳ (T ⊳ S)≤x.(4.3)

Let x′ = max(T<x \ T ′<x). If x
′ does not exist, by Lemma 4.5, T ′<x = (T ⊳ S)<x ⊔ x. Then (4.3) follows from the

first statement of Lemma 4.18. Otherwise, by Lemma 4.5, T ′<x = (T ⊳ S)<x ⊔ x − x′. Then (4.3) follows from the
second statement of Lemma 4.18. �

Finally, we can prove Lemma 4.16

Proof of Lemma 4.16. By the third statement of Lemma 4.17, the last two sets in (4.1) agree. We just need to check
the first two sets in (4.1) agree. Since U � T and |U<x| = |T<x|, we have U≥x � T≥x. Then U and T satisfies the
condition in Lemma 4.19, so we have the first equation in Lemma 4.16. For the second equation, we simply let S be
a set consisting of |T | very large numbers, so T ⊳ S = T and (T ⊔ x− y)⊳ S = (T ⊔ x− y). �

5. The left key of an increasing tableau

For an increasing tableau P , its left key is denoted as K−(P ). In Section 5.1, we give the usual definition of
K−(P ) as in [RY21] using K-theoretic jeu-de-taquin of Thomas and Yong [TY09]. In Section5.2, we derive a simple
way to compute K−(P ) using the ⊳ operator.

5.1. Defining K−(P ) using K-theoretic jeu-de-taquin. In this section, we consider a more general family of
tableaux. Let λ and µ be two partitions such that the Young diagram of µ is contained in the Young diagram of
λ. The skew Young diagram of λ/µ is the set theoretic difference between the Young diagram of λ and the Young
diagram of µ. A skew tableau of shape λ/µ is a filling of the skew Young diagram of λ/µ with positive integers.
Skew tableaux whose shapes are left-justified and top-justified are called normal . Skew tableaux whose cells are
right-justified and bottom-justified are called anti-normal . We say a skew tableau is increasing if each of its row
(resp. column) increases from left to right (resp. top to bottom). Let sInc be the set of all increasing tableaux with
skew shape.

Thomas and Yong [TY09] introduce an operation called anti-rectification which shifts cells in T ∈ sInc to make it
anti-normal. This map consists of small moves called reverse K-jeu-de-taquin (revKjdt) which are defined on a more
general family of fillings.

Definition 5.1. A dotted skew tableau is a filling of a skew Young diagram with positive integers and the symbol •.
Let m be a positive integer. Let sIncm<• be the set of dotted skew tableaux such that each row and column is strictly
increasing with respect to the order · · · < m < • < m+ 1 < · · · .

The shape of a dotted skew tableau is defined similarly. Therefore, we can also use normal and anti-normal to
describe dotted skew tableaux.
Definition 5.2. [TY09] Define the reverse K-jeu-de-taquin (revKjdt) as a shape-preserving map from sIncm<• to
sIncm−1<• when m ≥ 1. Take T ∈ sIncm<•. For each • (resp. m) that is adjacent to an m (resp. •) in T , we replace
it by m (resp. •). The resulting dotted skew tableau is in sIncm−1<•.

Example 5.3. We perform revKjdt to send an element of sInc4<• to sInc3<•

1 2 4 5

3 4 • 6

1 4 • 5 7

2 • 6

3 • 7

−−−−−→

1 2 4 5

3 • 4 6

1 • 4 5 7

2 4 6

3 • 7

We provide another way to understand revKjdt. Let us start with following definitions.

Definition 5.4. A skew shape is called a short ribbon if it satisfies the following.

• All cells are connected.
• Does not have a 2× 2 subshape.
• Each column or row has at most 2 cells.
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A dotted skew tableau is called an alternating ribbon of m if it satisfies the following.

• Its shape is a short ribbon.
• All cells are filled by • and m. Adjacent cells are filled differently.

It is clear that for any short ribbon, there are two alternating ribbons of m with that shape. We say an alternating
ribbon has type 1 if its topmost cell in the leftmost column is m. Otherwise, it has type 2.

Example 5.5. In this example, we present a short ribbon and the two alternating ribbons of m with that shape. The
former has type 1 and the latter has type 2.

m •

m •

m •

•

• m

• m

• m

m

Now take T ∈ sIncm<•. We may describe revKjdt as follows. If we focus on its m and •, ignoring all other
numbers, we see a skew-shape tableau where each connected component is an alternating ribbon. Each alternating
ribbon with more than one cell must have type 1. A revKjdt move would change these alternating ribbons with more
than one cell into type 2.

Next, we use revKjdt to describe a process called anti-rectification. Let T be an increasing tableau of skew shape
λ/µ. Say all numbers in T are at most m for some m. We may add some cells containing • to T and obtain an
element of sIncm<•. By recursively applying revKjdt, we obtain an element of sInc0<•. Then we remove all •.
This process yields a skew increasing tableau with a different shape. By repeating this process, we will end with an
increasing tableau of anti-normal shape.

Example 5.6. Let T be the following element of sInc.

T =

3

1

2 3

2 4

We may put a • under each ”3” and perform revKjdt:

3

1 •

2 3

2 4 •

revKjdt
−−−−−→

3

1 •

2 3

2 • 4

revKjdt
−−−−−→

•

1 3

2 3

2 • 4

revKjdt
−−−−−→

•

1 3

• 3

• 2 4

revKjdt
−−−−−→

•

1 3

• 3

• 2 4

.

Now we may ignore the •, obtaining an element of sInc. Then we may place a • at row 3 and repeat this process:

1 3

3 •

2 4

revKjdt 4 times
−−−−−−−−−−→

• 1

1 3

2 4

.

Finally, we remove the current • and put a • under 3. We perfrom revKjdt again, obtaining

1

1 3

2 4 •

revKjdt 4 times
−−−−−−−−−−→

1

1 3

• 2 4

which is the result of our anti-rectification if we ignore its •

Remark 5.7. During the anti-rectification process, we need to choose where to place the •. Making different choices
will actually affect the final result. Let us anti-rectify the T in Example 5.6 with different choices of the positions to
place the •.

3

1 •

2 3

2 4

revKjdt 4 times
−−−−−−−−−−→

•

1 3

2 3

2 4
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1 3

2 3 •

2 4 •

revKjdt 4 times
−−−−−−−−−−→

• 1

• 2 3

• 2 4

1

2 3

2 4 •

revKjdt 4 times
−−−−−−−−−−→

1

• 3

• 2 4

If we ignore the bullet in the last dotted skew tableau, we obtain the result of our anti-rectification. This time, we
end up with something different from the output in Example 5.6.

Finally, for an increasing tableau P of normal shape. We use anti-rectification to define K−(P ), the left key of
P . Let P←j to be the tableau obtained by keeping only the first j columns of P . Column j of K−(P ) only depends
on P←j . Say P has r rows. We may embed P←j in an j by r rectangle. Then we anti-rectify P←j . When we
choose where to place the •, we always place one • at the leftmost available position inside the rectangle. After the
anti-rectification, numbers in the leftmost column will form column j of K−(P ).

Example 5.8. Let P be the following increasing tableau of normal shape.

P =

1 3 6 7

3 5 7

4

6

We compute K−(P ) as follows. First, consider P←1, which is already anti-normal. Column 1 of K−(P ) consists of
{1, 3, 4, 6}. Next, consider P←2. We may anti-rectify it as follows.

P←2 =

1 3

3 5

4

6

−−→

1

1 3

4 5

6

−−→

1

3

1 5

4 6

.

Column 2 of K−(P ) consists of {1, 4}. Next, we anti-rectify P←3. Notice that the first two iterations of anti-rectifying
P←3 will be the same as anti-rectifying P←2.

P←3 =

1 3 6

3 5 7

4

6

−−→

1 6

3 7

1 5

4 6

−−→

1

3 6

1 5 7

4 6

−−→

1

3

1 5 6

4 6 7

.

Column 3 of K−(P ) also consists of {1, 4}. Finally, we anti-rectify P←4.

P←4 =

1 3 6 7

3 5 7

4

6

−−→

1 7

3

1 5 6

4 6 7

−−→

1

3 7

1 5 6

4 6 7

−−→

1

3

1 5 6 7

4 6 7

−−→

1

3

1 5 6

4 5 6 7

.

Column 4 of K−(P ) consists of {4}. Thus, K−(P ) is

P =

1 1 1 4

3 4 4

4

6

From this definition, it is not clear that K−(P ) must be a key. A proof of this can be found in [RY21]. This
argument is originally formed by the first author of this paper.

It is hard to compute K−(P ) via this definition since the computation consists of many revKjdt moves. Thus, in
the next section, we provide a simple way to compute K−(P ) using ⊳.
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5.2. Computing K−(P ) using ⊳. We now present a simple method that computes K−(P ) for P ∈ Incn. Recall
that Pi is the set of numbers that appear in column i of P . Define

Pi,j := Pi ⊳ Pi+1 ⊳ · · ·⊳ Pj .

Then we can state the main result of this section.

Theorem 5.9. Let P ∈ Incn with C columns. If we anti-rectify P and get Pց whose rightmost column is in column

C, then Pց1 = P1,C .

A consequence of this result is the following simple algorithm that computes K−(P ).

Corollary 5.10. Let P be an increasing tableau with normal shape. Column i of K−(P ) consists of P1,i.

Proof of Theorem 5.9. Since Pց is anti-normal, Pց1,C = Pց1 . We need to show P1,C = Pց1,C . We obtain Pց from
P by applying the three operators iteratively: Adding • to get a tableau in sIncn<•; Performing revKjdt to get a
tableau in sInc0<•; Removing all •. It remains to check the Lemma 5.11 below. �

For P ∈ sIncn<•, we let Pi be the set of numbers appearing in column i of P , ignoring the •. Then P1,C is also
well-defined.

Lemma 5.11. Take P ∈ sIncn<•. Let C be the largest such that PC 6= ∅. Perform a revKjdt move on P and obtain
P̃ ∈ Incn−1<•. Then P1,C = P̃1,C .

This Lemma can be proved by studying the effect of changing one alternating ribbon.

Lemma 5.12. Take P ∈ sIncn<• with C columns. Assume there is one alternating ribbon of n and • within P .
Moreover, assume the alternating ribbon has more than one cell and appears in every column of P .

Now switch this alternating ribbon into type 2 of the same shape. Let P̃ ∈ sIncn−1<• be the result. Then

P1 ⊳ · · · ⊳ PC ⊳ S = P̃1 ⊳ · · · ⊳ P̃C ⊳ S

for any set S.

Proof. When C = 1, the claim is immediate. Assume C > 1. We start with following observations.

• If n /∈ PC , then P̃C = PC ⊔ n. Otherwise, P̃C = PC .
• Similarly, if column 1 of P does not have •, then P̃1 = P1 − n. Otherwise, P̃1 = P1.
• For 1 < c < C, P̃c = Pc.

First, we claim
PC−1 ⊳ PC ⊳ S = PC−1 ⊳ P̃C ⊳ S.

The claim is immediate if PC = P̃C . Assume P̃C = PC ⊔ n. Notice that setting U = PC−1, T = PC and x = n
would satisfy the conditions of Lemma 4.19. Our claim is implied by Lemma 4.19.

Now, notice that we are done when column 1 of P contains a •. If so, P̃1 = P1, . . . , P̃C−1 = PC−1. Then

P1 ⊳ · · · ⊳ PC ⊳ S = P̃1 ⊳ · · · ⊳ P̃C ⊳ S by the previous claim.
Otherwise, we assume column 1 of P does not have a •, so P̃1 = P1 − n. Notice that setting T = P1, S = P2 and

x = n would satisfies the conditions of Corollary 4.13. Thus, n /∈ P1 ⊳ P2. Now by our first claim,

P1 ⊳ · · · ⊳ PC ⊳ S = P1 ⊳ · · · ⊳ PC−1 ⊳ P̃C ⊳ S.

By n /∈ P1 ⊳ P2 and Lemma 4.14, both sides of the equation above do not contain n. Thus,

P1 ⊳ · · · ⊳ PC−1 ⊳ P̃C ⊳ S = P̃1 ⊳ P2 ⊳ · · · ⊳ PC−1 ⊳ P̃C ⊳ S.

Then the proof is finished after replacing all Pi on the right by P̃i. �

Now we can prove Lemma 5.11.

Proof. Look at n and • in T . Assume there are J alternating ribbons with more than one cell. Label them with
1, 2, . . . , J arbitrarily. Now let P 0 = P and P j is obtained from P j−1 by switching the alternating ribbon j to type
2. Then we know P J = P̃ . It remains to show P j−1

1,C = P j
1,C .

Assume the alternating ribbon j spans from column aj to column bj . Then P j−1 and P only differ between these
two columns. Thus, column aj , . . . , bj of P

j−1 form a dotted tableau in sIncn<•. We may apply Lemma 5.12 and get

P j−1
aj

⊳ . . . ⊳ P j−1
bj

⊳ S = P j
aj

⊳ . . . ⊳ P j
bj
⊳ S

for any set S.
Finally, set S = T j−1

bj+1,C if bj < C. If bj = C, set S = {1, . . . , N} for some N large enough. We have P j−1
aj ,C

= P j
aj ,C

,

which implies P j−1
1,C = P j

1,C �
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6. The reverse row insertion

Recall the main tool we used is a bijection Ψ : T → C of Huang, Shimozono and Yu. This map relies on a reverse
row insertion algorithm on increasing tableaux. In Section 6.1, we describe the reverse row insertion algorithm which
leads to the bijection Ψ : C → T . In Section 6.2, we describe the change of left key when we apply the reverse
insertion to a tableau. In Section 6.3, we prove Theorem 3.1.

6.1. Describing the reverse row insertion. Huang, Shimozono and Yu [HSY22] introduced a row analogue of
the Hecke column insertion [BKS+08]. Notice that in [HSY22], the authors described the algorithm on decreasing
tableaux. For the purpose of this paper, we reverse all the comparisons and describe the algorithm on increasing
tableaux. We start with the following definitions. For a tableau P , we let Pr↓ denote the tableau obtained by
removing the first r − 1 rows of P .

Definition 6.1 ([HSY22]). A value x is ejectable in P if x occurs in the first row of P and either x + 1 is not in the
first row of P , or x+ 1 is in the first row of P and x+ 1 is ejectable in P2↓.

Definition 6.2. Let (r, c) be a cell in an increasing tableau P . The bumping path of (r, c) in P is the following
sequence of cells in P : (r, cr), (r − 1, cr−1), . . . , (1, c1) defined recursively. First, cr := c. Then ci is the largest such
that P (i, ci) < P (i+ 1, ci+1).

Clearly, a bumping path (r, cr), (r − 1, cr−1), . . . , (1, c1) satisfies cr ≤ · · · ≤ c1.
We say a cell (r, c) in a tableau P is an outer cell in P if neither (r + 1, c) nor (r, c+ 1) is in P . The reverse row

insertion algorithm takes P , (r, c), and α as input where P is an increasing tableau, (r, c) is an outer cell in P and
α = 0 or 1. The output will be an increasing tableau P ′ and a positive integer m. The input α indicates whether P
“loses the cell (r, c)”:

shape(P ′) =

{

shape(P ) if α = 0

shape(P )− {(r, c)} if α = 1.

Let (r, cr), (r − 1, cr−1), . . . , (1, c1) be the bumping path starting at (r, c) in P and let mi = P (i, ci). The output
value m is by definition the value m1. The output tableau P ′ will only differ from P along the bumping path. It is
enough to describe whether each mi on the bumping path gets replaced, and if so, by what value. This decision is
determined iteratively by decreasing i based on the values mi and mi+1, the i-th row of P , the subtableau P ′>i, and
a status indicator αi+1 ∈ {0, 1}. The i-th iteration updates the i-th row of P (which becomes the i-th row of P ′)
and produces αi ∈ {0, 1}.

Let P ′ be a working tableau which is initialized to P . In the initialization step, if α = 1, remove from P ′ the
removable cell in row r and its contents mr and set αr = 1 and i = r − 1. If α = 0 set mr+1 = ∞, αr+1 = 0 and
i = r.

The algorithm enters a loop. If i = 0 the algorithm terminates and the current tableau P ′ is the output tableau.
Now assume i ≥ 1. Let R be the set consisting of numbers in row i of the current tableau P ′ (or equivalently P ,
since P and P ′ differ only in rows of index greater than i). By definition mi ∈ R. There are several cases for one
iteration and each case has a nickname.

• Dummy (Case D): If mi + 1 ∈ R (which implies mi+1 = mi + 1) do not change the i-th row and set
αi = αi+1.

• Direct Replacement (Case DR): Otherwise if αi+1 = 1 and mi+1 /∈ R, replace mi by mi+1 in row i of
P ′ and set αi = 1.

Suppose neither of the two above cases hold. Find the largest ejectable entry x in P ′i+1↓ such that mi < x < mi+1.

• Indirect Replacement (Case IR): Suppose x exists. Replace mi by x in row i of P ′ and set αi = 1.
• No Replacement (Case NR): Suppose x does not exist. Do not change the i-th row and set αi = 0.

Now decrement i and go to the top of the loop.

Example 6.3. Let P be the increasing tableau below.

P =

1 2 3 5

2 5 6

3 6

6 7

8
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Let (r, c) be (4, 2) and α = 0. First, the algorithm finds the bumping path starting at (4, 2), which is highlighted
by yellow. Thus, the output number m is 3. To compute the output tableau, it first initializes: i = 4, α5 = 0 and
m5 = ∞. Now We trace the iterations of this algorithm.

• Iteration when i = 4: We have m4 = 7. Since m4 + 1 /∈ R, we are not in Case D. Since α5 = 0, we are not
in Case DR. Then find the largest x that is ejectable in P ′5↓ and 7 < x < ∞. We have x = 8, so we are in
Case IR. Replace the 7 in row 4 by 8 and set α4 = 1, i = 3.

• Iteration when i = 3: We have m3 = 6. Since m3 + 1 /∈ R, we are not in Case D. Since α4 = 1 and m4 /∈ R,
we are in Case DR. Replace the 6 in row 3 by 7 and set α3 = 1, i = 2.

• Iteration when i = 2: We have m2 = 5. Since m2 + 1 = 6 is in R, we are in Case D. We do not change row
2 and set α3 = 1, i = 1.

• Iteration when i = 1: We have m1 = 3. Since m1 + 1 /∈ R, we are not in Case D. Since m2 ∈ R, we are not
in Case DR. Then find the largest x that is ejectable in P ′2↓ and 3 < x < 5. Such x does not exist, so we are
in Case NR. We do not change row 1.

The tableau P ′ after each iteration is depicted as follows:

1 2 3 5

2 5 6

3 6

6 8

8

1 2 3 5

2 5 6

3 7

6 8

8

1 2 3 5

2 5 6

3 7

6 8

8

1 2 3 5

2 5 6

3 7

6 8

8

After 1 iteration After 2 iterations After 3 iterations After 4 iterations

Huang, Shimozono and Yu also defined the insertion algorithm, which takes an increasing tableau P ′ and a positive
integer m as input, producing a triple (P, (r, c), α). By Theorem 5.3 of [HSY22], the reverse insertion algorithm and
insertion are inverses of each other. We deduce the following property of the insertion algorithm.

Lemma 6.4. Let P be an increasing tableau without the number N . Perform row insertion on (P,m) and get
(P ′, (r, c), α). Let p (resp. p′) be the increasing tableau we get after ignoring all numbers larger than N in P (resp.
p′). If m ≥ N , then p = p′. If m < N , then p′ is the tableau we get after performing row insertion on (p,m)

Proof. We know (P,m) is obtained by reverse row insertion on (P ′, (r, c), α). If m ≥ N , then the whole bumping
path does not involve numbers smaller than N . Since P is obtained from P ′ by changing numbers in the bumping
path, we know p = p′.

Now suppose m < N and consider the reverse insertion on (P ′, (r, c), α). Let i be the largest such that mi < N .
Assume this value is at (i, j) of P . The algorithm behaves the same in the first i rows of P as computing the reverse
insertion on (p′, (i, j), αi+1). Thus, reverse insertion on (p′, (i, j), αi+1) yields (p,m), so p′ is the tableau we get after
performing insertion on (p,m).

�

Now we may describe the bijection Ψ from T to C recursively. Given (P,Q) ∈ T . If P and Q are both the empty
tableaux, then Ψ(P,Q) is the pair of two empty words. Otherwise, find the smallest number in Q and break ties by
picking the rightmost. Say it is the number q in cell (r, c). Consider two cases.

• If q is the only number in (r, c) of Q, then we remove this cell and let Q′ be the resulting tableau. Perform
the reverse insertion on P with input (r, c) and α = 1. Let P ′,m be the output.

• If q is not the only number in (r, c), we remove q from this cell and let Q′ be the resulting tableau. Perform
the reverse insertion on P with input (r, c) and α = 0. Let P ′,m be the output.

For (P ′, Q′) ∈ T , we may apply the map Ψ recursively and get Ψ(P ′, Q′) = (a′, i′). Then Ψ(P,Q) := (m◦a′, q ◦ i′)
where ◦ represents concatenation of words.

Theorem 6.5. [HSY22, Corollary 5.9] The map Ψ is a bijection from Tw to Cw that preserves the weight of the
second entry. In other words, Ψ is bijective and if Ψ(P,Q) = (a, i), then [rev(word(P ))]H = [a]H and wt(Q) = wt(i).

Example 6.6. Consider the following (P,Q) ∈ T :

P = 1 2

3
Q = 3 21

21
.
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We would like to compute Ψ(P,Q). First, we find the smallest number in Q and break ties by picking the rightmost.
That is the 1 in cell (1, 2). Thus, we perform reverse insertion on P with input (r, c) = (1, 2) and α = 0. We get the
output number 2 and the resulting (P ′, Q′) is:

P ′ =
1 3

3
Q′ =

3 2

21
.

Recursively, we can compute Ψ(P ′, Q′) = (1313, 1223). Thus, Ψ(P,Q) is (21313, 11223). The word rev(word(P )) =
213 and 21313 are Hecke words of the same permutation. The RSVT Q and the word 11223 have the same weight.

Finally, we can prove Lemma 2.13 stated in §2.

Proof of Lemma 2.13. By induction on the length of A. The inductive step is finished by Lemma 6.4. �

6.2. Change of left key under reverse insertion. Shimozono and Yu [SY23] studied how the left key of an
RSVT changes if we remove the rightmost appearance of the smallest number.

Lemma 6.7 ([SY23, Lemma 4.18 and Lemma 4.19]). Let Q be an RSVT. Let min(Q) = i and let (r, c) be the
rightmost cell with i ∈ Q(r, c). Let Q′ be the RSVT obtained by removing i from Q (also remove the cell (r, c) if i is
the only number in it). If i is not the only number in Q, then clearly K−(L(Q)) = K−(L(Q

′)). Otherwise, K−(L(Q))
and K−(L(Q

′)) only differ at column c: K−(L(Q))c = K−(L(Q
′))c ⊔ y where

y =

{

i if c = 1,

min(K−(L(Q
′))c−1 −K−(L(Q

′))c) if c > 1.

We are going to derive the analogue of this lemma for increasing tableau. Take an increasing tableau P . Fix an
outer cell (R,C) of P and α = 0 or 1 throughout this section. Let (P ′,m) be the result of reverse insertion with
input (P, (R,C), α). We would like to show the following:

Theorem 6.8. If α = 0, K−(P ) = K−(P
′). Otherwise, K−(P ) and K−(P

′) only differ at column C:

K−(P
′)C = K−(P )C −min(K−(P )C \K−(P )C+1).

The rest of this section aims to prove Theorem 6.8. We define the block in column c as the set of (r, c) such that
P (r, c) 6= P ′(r, c). Recall the definition of bumping path from section §2. Let (R, cR), (R − 1, cR−1), · · · , (1, c1) be
the bumping path of P that starts at (R,C). Since the algorithm only changes entries along the bumping path, we
know each block consists of cells in the bumping path. Also recall that cR ≤ cR−1 ≤ · · · ≤ c1, so the block in column
c, if non-empty, must be

{(r1, c), (r1 + 1, c), · · · , (r2 − 1, c), (r2, c)}

for some r1 ≤ r2. Moreover, we know the reverse insertion performs direct replacement in row r1, . . . , r2 − 1. Thus,
for any r1 ≤ r < r2, P

′(r, c) = P (r + 1, c). If α = 1 and c = C, P ′(r2, c) is undefined. This block is also called the
deletion block. Otherwise, the reverse insertion performs direct replacement or indirect replacement on row r2. Such
a block is also called an insertion block.

Example 6.9. Below is an example of the reverse-insertion algorithm applied on the cell (9, 1) of P with α = 1. We
color the cells along the bumping path. The color is determined by the case of the algorithm in that row: red (DR),
orange (IR), green (D), blue (NR), and pink (the initial removal).

P =

1 2 3 4 7

2 3 5 7 8

4 5 6 8

5 6 7 10

8 10 11

10 11 13

13 14

14 16

15

⇒ P ′ =

1 2 3 5 7

2 3 6 7 8

4 5 7 8

5 6 8 10

8 10 11

10 11 13

13 14

15 16
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Here, the deletion block is 14

15
in the first column, and the insertion blocks are

5

6

7

in the third column, and 4

in the fourth column. Notice that outside of these blocks, P and P ′ are the same, and each block only changes by
adding a number and removing a number from the block.

We now view the effect of reverse insertion as changing the block in each column of P to obtain P ′. We set
P (C−1) = P . For c ≥ C, let P (c) be the tableau obtained from P c−1 by changing the block in column c if it exists,
or P (c) = P (c−1) if there is no block in column c. Then P ′ = P (m) for some m large enough. To prove Theorem 6.8,
we just need to understand how P (c) differs from P (c−1). First, we study the effect of changing an insertion block.

Lemma 6.10. Suppose the block in column c is an insertion block and let x be the value inserted to this block. Then
c > 1 and |(Pc)<x| = |(P ′c−1)<x|.

Proof. Let (r, c) be the bottom-most cell of this insertion block, so P (r, c) = x and P ′(r, c) > x. Moreover, P ′(r, c−
1) = P (r, c− 1) < x. We know x was inserted into (r, c) through a direct or indirect replacement, so P (r+1, c′) = x
for some c′. We consider two cases:

• Suppose the cell (r+1, c) does not exist in P , then trivially c′ < c and |(Pc)<x| = r. If (r+1, c− 1) does not
exist in P either, then |(Pc−1)<x| = r. Otherwise, P ′(r + 1, c− 1) ≥ P (r + 1, c− 1) ≥ x, so |(P ′c−1)<x| = r.

• Suppose the cell (r + 1, c) exists in P . By P ′ is increasing, x < P ′(r + 1, c) = P (r + 1, c), so |(Pc)<x| = r.
Then c′ < c and x ≤ P ′(r + 1, c− 1), so |(P ′c−1)<x| = r. �

Lemma 6.11. Suppose the block in column c is an insertion block and let x be the value inserted to this block. Then
the insertion block removes the number min{t ∈ Pc : x ⊔ Pc − t � Pc+1}.

Proof. Let z be the number removed by the insertion block in column c. We have P ′c = x ⊔ Pc − z and P ′c � Pc+1.
Assume P (r, c) = z. By definition of the insertion block, the algorithm cannot perform another direct replacement
step in column c in row r − 1. Thus, either r = 1 or z ≥ Pc+1(r − 1). In either case, for any i ∈ [r − 1], we cannot
have x ⊔ Pc − Pc(i) � Pc+1. Our claim is therefore proved. �

We now understand the effect of changing an insertion block.

Lemma 6.12. Suppose the block in column c is an insertion block, then K−(P
(c)) = K−(P

(c−1)).

Proof. Say the insertion block gains x and loses y, so P
(c)
c = x⊔P

(c−1)
c −y. By Corollary 5.10, K−(P

(c−1))i = P
(c−1)
1,i

and K−(P
(c))i = P

(c)
1,i . Since P (c−1) and P (c) only differ in column c, we know K−(P

(c−1))i = K−(P
(c))i if i < c.

By Lemma 6.10, c > 1. Notice that P
(c−1)
c−1 = P

(c)
c−1 = P ′c−1, P

(c−1)
c+1 = P

(c)
c+1 = Pc+1, P

(c−1)
c = Pc, and P

(c)
c = P ′c.

We set U = P ′c−1, T = Pc and S = Pc+1. By Lemma 6.10 and Lemma 6.11, U, T, S and x, y satisfy the conditions
of Lemma 4.16. Thus, P ′c−1 ⊳ Pc = P ′c−1 ⊳ P ′c and

P ′c−1 ⊳ Pc ⊳ S′ = P ′c−1 ⊳ P ′c ⊳ S′.

for any S′ ⊆ Pc+1. The first equation implies P ′1,c = P1,c. The second equation implies P ′1,i = P1,i if i > c. �

Next, we study the deletion block.

Lemma 6.13. Suppose the block in column c is a deletion block. Then this block loses min{t ∈ Pc : Pc − t � Pc+1}.

Proof. By a similar proof of Lemma 6.11. �

Lemma 6.14. If a deletion block occurs in column c, then K−(P ) and K−(P
(c)) agree except in column c, where

K−(P
(c))c = K−(P )c −min(K−(P )c \K−(P )c+1)(6.1)

Proof. Recall that P (c) is obtained from P by changing the deletion block. Assume the deletion block loses y, so

P
(c)
c = Pc − y. By Lemma 6.13, y = min{t ∈ Pc : Pc − t � Pc+1}.

By Corollary 5.10, column i of K−(P ) and K−(P
(c)) are P1,i and P

(c)
1,i respectively. They clearly agree if i < c.

Suppose i > c. To show P1,i = P
(c)
1,i , it is enough to check Pc,i = P

(c)
1,i , which is Pc ⊳Pc+1,i = (Pc − y)⊳Pc+1,i. Since

Pc+1,i ⊆ Pc+1, this equation is implied by the third statement in Lemma 4.17.

Finally, we show P
(c)
i,c = Pi,c −min(Pi,c \ Pi,c+1) for all i ∈ [c] by induction on i from i = c to i = 1. Setting i = 1

would imply (6.1). For the base case i = c, we know P
(c)
c,c = Pc,c − y. It remains to check y is the smallest number in
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Pc that is not in Pc,c+1. This is done by the first two statements in 4.17. For the inductive step, assume i < c. We
have

P
(c)
i,c = Pi ⊳ P

(c)
i+1,c = Pi ⊳ (Pi+1,c −min(Pi+1,c \ Pi+1,c+1)) = Pi,c −min(Pi,c \ Pi,c+1),

where the last two steps are given by the inductive hypothesis and Lemma 4.15 respectively. �

Now we have understood how K−(P
(c)) differs from K−(P

(c−1)).

Proof of Theorem 6.8. Consider the sequence of increasing tableaux:

P = P (C−1), P (C), P (C+1), · · · , P (m−1), P (m) = P ′,

If α = 0, then there is no deletion block. By Lemma 6.12, K−(P ) = K−(P
(C)) = · · · = K−(P

′). If α = 1, then
the block in column c is a deletion block and all other blocks are insertion blocks. By Lemma 6.12, K−(P

(C)) =
K−(P

(C+1)) = · · · = K−(P
′). Then by Lemma 6.14, K−(P

′) agrees withK−(P ) except in column c whereK−(P
′)c =

K−(P )c −min(K−(P )c \K−(P )c+1). �

6.3. Proof of Theorem 3.1. In this section, we prove Theorem 3.1 using similar idea as [SY23, Theorem 4.2].

Proof of Theorem 3.1. Since Ψ is a bijection from T to C, it suffices to show that for any (P,Q) ∈ T b, Ψ(P,Q) ∈ Cb

and for any (a, i) ∈ Cb, Ψ−1(a, i) ∈ T b.
Take (P,Q) ∈ T b where Q has at least one cell. Let i1 = min(Q). Let (r, c) be the rightmost cell in Q with

i1 ∈ Q(r, c). Let α = 1 if i1 is the only number in Q(r, c) and α = 0 otherwise. Let (P ′, a1) be the output of reverse
insertion on (P, (r, c), α). Let Q′ be the tableau obtained from Q by removing i1 from Q(r, c), and also remove the
cell (r, c) if α = 1. Due to the recursive definition of Ψ, Ψ(P,Q) = (a1 ◦ a′, i1 ◦ i′) where (a′, i′) = Ψ(P ′, Q′). Notice
that (a, i) ∈ Cb is equivalent to a1 ≤ i1 and (a′, i′) ∈ Cb. Inductively, we may assume (a′, i′) ∈ Cb if and only if
(P ′, Q′) ∈ T b. Thus, it suffices to show the following two statements:

• If (P,Q) ∈ T b, then a1 ≥ i1 and (P ′, Q′) ∈ T b.
• If a1 ≥ i1 and (P ′, Q′) ∈ T b, then (P,Q) ∈ T b.

We start with the first statement. To see a1 ≥ i1, observe that i1 = min(Q) implies i1 ≤ min(L(Q)). By the
definition of K−(·) on RSSYT, min(L(Q)) ≤ min(K−(L(Q))), which in turn is at most min(K−(P )) ≤ min(P ) ≤ a1.
Next we show (P ′, Q′) ∈ T b. If α = 0, then Theorem 6.7 and Theorem 6.8 yield K−(L(Q

′)) = K−(L(Q)) ≤ K−(P ) =
K−(P

′). Now suppose α = 1. By Theorem 6.8 the only column where K−(P ) and K−(P
′) differ is column c and

(K−(P
′))c = (K−(P ))c − x, where x = min((K−(P ))c \ (K−(P ))c+1). By Theorem 6.7, the only column where

K−(L(Q)) and K−(L(Q
′)) differ is column c and (K−(Q

′))c = (K−(Q))c − y for some y. It remains to check for
each j ∈ [|K−(P

′)c|], K−(P
′)c(j) ≥ K−(Q

′)c(j).
For j such that (K−(P ))c(j) ≥ x,

(K−(P
′))c(j) = (K−(P ))c(j + 1) ≥ (K−(L(Q)))c(j + 1) ≥ (K−(L(Q

′)))c(j).

For j such that (K−(P ))(j) < x,

(K−(P
′))c(j) = (K−(P

′))c+1(j) ≥ (K−(L(Q
′)))c+1(j) ≥ (K−(L(Q

′)))c(j).

Therefore, for all j, (K−(P
′))c(j) ≥ (K−(L(Q

′)))c(j), which shows that K−(P
′) ≥ K−(L(Q

′)).
We now show the second statement. If α = 0, then Theorem 6.7 and Theorem 6.8 yield K−(L(Q

′)) = K−(L(Q)) ≤
K−(P ) = K−(P

′). Otherwise, α = 1. By Theorem 6.8, the only column where K−(P ) and K−(P
′) differ is column

c and (K−(P ))c = (K−(P
′))c ⊔ x for some x. By Theorem 6.7, the only column where K−(L(Q)) and K−(L(Q

′))
differ is column c, and K−(L(Q))c = K−(L(Q

′))c ⊔ y, where

y =

{

i1 if c = 1,

min(K−(L(Q
′))c−1 −K−(L(Q

′))c) if c > 1.

It remains to check for each j ∈ [|K−(P )c|], K−(P )c(j) ≥ K−(Q)c(j). For j such that (K−(L(Q
′)))c(j) > y,

(K−(P ))c(j) ≥ (K−(P
′))c(j − 1) ≥ (K−(L(Q

′)))c(j − 1) = (K−(L(Q)))c(j).

Now assume (K−(L(Q
′)))c(j) ≤ y. If c = 1, y = i1 is the smallest number in i, so it is the smallest number in Q.

We know (K−(L(Q
′)))c(j) = y and y ≤ min(a) = min(P ) ≤ (K−(P ))c(j). If c > 1, we have

K−(P )c(j) ≥ K−(P )c−1(j) ≥ K−(L(Q))c−1(j) = K−(L(Q))c(j)

This completes the proof. �

Finally, we mention a by-product of Theorem 3.1: the Grothendieck-to-Lascoux expansion. It was conjectured
by [RY21] and proved in [SY23].
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Corollary 6.15. For a permutation w ∈ Sn,

G
(β)
w =

∑

P∈Inc
word(P )=w−1

β|wt(K−(P ))|−ℓ(w)
L
(β)
wt(K−(P )).

Proof. This follows from Theorem 3.1, Equation 2.4, and Equation 2.1. �
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Appendix A. Example of Theorem 1.3

Suppose n = 3. Say we would like to expand L
(β)
α ×G

(β)
w (x1, · · · , xn) into Lascoux polynomials where α = (1, 0, 2)

and w has one-line notation 12345876. We let

P1 =
1 4

3
,

so K−(P1) = (1, 0, 2). We pick N = 5. Now we are looking for increasing tableau with at most 3 rows such that

• Entries smaller than 5 form the P1 we picked, and
• Entries of word(P ) that are larger than 5 form a Hecke word of w.

The following are all increasing tableaux satisfying both conditions:

1 4 6 7

3

7

1 4 6 7

3 7

1 4 6

3 6 7

1 4 6

3 7

6

1 4 7

3 6

7

1 4

3 6

6 7

1 4 6 7

3 7

7

1 4 6 7

3 6

7

1 4 6 7

3 7

6

1 4 6 7

3 6 7

1 4 6

3 6

6 7

1 4 7

3 6

6 7

1 4 6

3 6 7

6

1 4 6

3 6 7

7

1 4 6 7

3 6 7

6

1 4 6 7

3 6 7

7

1 4 6 7

3 6

6 7

1 4 6

3 6 7

6 7

1 4 6 7

3 6 7

6 7

After applying K−(·), we obtain the keys:

1 3 3 3

3

7

1 1 3 3

3 3

1 1 1

3 3 3

1 3 3

3 6

6

1 1 3

3 3

7

1 1

3 3

6 6

1 1 3 3

3 3

7

1 1 3 3

3 3

7

1 3 3 3

3 6

6

1 1 1 3

3 3 3

1 1 3

3 3

6 6

1 1 3

3 3

6 6

1 1 1

3 3 3

6

1 1 1

3 3 3

7
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1 1 1 3

3 3 3

6

1 1 1 3

3 3 3

7

1 1 3 3

3 3

6 6

1 1 1

3 3 3

6 6

1 1 1 3

3 3 3

6 6

We apply cap3 to each key and get:

1 3 3 3

2

3

1 1 3 3

3 3

1 1 1

3 3 3

1 2 3

2 3

3

1 1 3

2 3

3

1 1

2 2

3 3

1 1 3 3

2 3

3

1 1 3 3

2 3

3

1 2 3 3

2 3

3

1 1 1 3

3 3 3

1 1 3

2 2

3 3

1 1 3

2 2

3 3

1 1 1

2 3 3

3

1 1 1

2 3 3

3

1 1 1 3

2 3 3

3

1 1 1 3

2 3 3

3

1 1 3 3

2 2

3 3

1 1 1

2 2 3

3 3

1 1 1 3

2 2 3

3 3

Finally, we apply wt(·) and get:

(1, 1, 4), (2, 0, 4), (3, 0, 3), (1, 2, 3), (2, 1, 3), (2, 2, 2)

(2, 1, 4), (2, 1, 4), (1, 2, 4), (3, 0, 4)

(2, 2, 3), (2, 2, 3), (3, 1, 3), (3, 1, 3)

(3, 1, 4), (3, 1, 4), (2, 2, 4), (3, 2, 3)

(3, 2, 4)

As a conclusion, we expand L
(β)
α ×G

(β)
w (x1, x2, x3) into:

L
(β)
(1,1,4) + L

(β)
(2,0,4) + L

(β)
(3,0,3) + L

(β)
(1,2,3) + L

(β)
(2,1,3) + L

(β)
(2,2,2)

+2βL
(β)
(2,1,4) + βL

(β)
(1,2,4) + 2βL

(β)
(2,2,3) + 2βL

(β)
(3,1,3)

+2β2
L
(β)
(3,1,4) + β2

L
(β)
(2,2,4) + β2

L
(β)
(3,2,3) + β3

L
(β)
(3,2,4)
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