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Abstract. Schubert polynomials are distinguished representatives of Schubert cycles
in the cohomology of the flag variety. Pipedreams (PD) and bumpless pipedreams
(BPD) are two combinatorial models of Schubert polynomials. There are many classical
results on PDs. For instance, Fomin and Stanley represented each PD as an element
in the nil-Coexter algebra. Lenart and Sottile converted each PD into certain chains in
the Bruhat order. This paper establishes the BPD analogues of both viewpoints. Our
results lead to a bijection between PDs and BPDs via Lenart’s growth diagram.
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1 Introduction

Fix n P Zě0. For a permutation w P Sn, Lascoux and Schützenberger [12] recursively
define the Schubert polynomial Sw. The base case is Sw0 :“ xn´1

1 xn´2
2 ¨ ¨ ¨ xn´1 where w0

is the permutation with one-line notation rn, n ´ 1, ¨ ¨ ¨ , 1s. To compute Sw for other
w P Sn, we need the divided difference operator Bip f q :“ f ´ f p¨¨¨ ,xi`1,xi,¨¨¨ q

xi´xi`1
. Let si P Sn denote

the transposition that swaps i and i ` 1. Then for any w P Sn and i P rn ´ 1s:

BipSwq “

#

Swsi if wpiq ą wpi ` 1q,
0 if wpiq ă wpi ` 1q.

The Schubert polynomials represent Schubert cycles in flag varieties and have been
extensively investigated. Schubert polynomials have two distinct combinatorial formulas
involving “pipes”: pipedreams (PD) [1, 3] and bumpless pipedreams (BPD) [11]. Both
are fillings of grids with certain tiles. When we refer to cells of a grid, we use the matrix
coordinates: row 1 is the topmost row and column 1 is the leftmost column. A pipedream
is a filling of a staircase grid: The grid has a cell in row i column j for each i ` j ď n ` 1.
The rightmost cell in each row is . The rest of the cells can be (crossing) or
(bump), but two pipes cannot cross more than once. A bumpless pipedream (BPD) is a
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consistent filling of an n ˆ n grid with six types of cells: , , , , and (blank).
Pipes enter from each cell on the bottom and exit on the right edge. In addition, two
pipes cannot cross more than once. The permutation associated to each PD (resp. BPD)
can be read off as follows: Label the pipes 1, 2, . . . , n along the top (resp. bottom) edge,
follow the pipes, and read the labels from top to bottom on the left (resp. right) edge.

Example 1.1. When n “ 5, we present a PD and a BPD associated with r2, 5, 1, 4, 3s:

Let PDpwq (resp. BPDpwq) be the set of all PDs (resp. BPDs) associated with w P Sn.
For P P PDpwq (resp. P P BPDpwq), the weight of P, denoted as wtpPq, is a sequence of
n ´ 1 integers where the ith entry is the number of (resp. ) on row i. For instance,
the PD and BPD in Example 1.1 both have weight p2, 2, 0, 1q. If α “ pα1, ¨ ¨ ¨ , αn´1q is a
sequence of n ´ 1 non-negative integers, we use xα to denote the monomial xα1

1 ¨ ¨ ¨ xαn´1
n´1 .

Theorem 1.2. [1, 3, 11] For w P Sn, Sw “
ř

PPPDpwq xwtpPq “
ř

DPBPDpwq xwtpDq.

There is a recent surge of research connecting BPDs with PDs and finding BPD ana-
logue of classical PD apparatus [7, 10, 8, 17]. This paper establishes the BPD analogue
of two classical stories on PDs:

• The nil-Coexter algebra Nn is generated by u1, ¨ ¨ ¨ , un´1. Fomin and Stanley [6]
defined the following elements in Qrx1, ¨ ¨ ¨ , xn´1s b Nn:

Aipxiq :“ p1 ` xiun´1qp1 ` xiun´2q ¨ ¨ ¨ p1 ` xiuiq and SPD :“ A1px1q ¨ ¨ ¨ An´1pxn´1q.

Combinatorially, after expanding SPD, each term xαui1 ¨ ¨ ¨ uik naturally corresponds
to a P P PDpwq with α “ wtpPq and i1 ¨ ¨ ¨ ik is a reduced word of w. Algebraically,
Fomin and Stanley proved SPD “

ř

wPSn
Swui1 ¨ ¨ ¨ uil where i1 ¨ ¨ ¨ il is any reduced

word of w. Consequently, they obtain an operator theoretic proof of the PD fomula.

• The Bruhat order is a partial order on Sn. Lenart and Sottile [14] defined a bijection
from PDpwq to chains pw1, w2, ¨ ¨ ¨ , wnq in the Bruhat order where w1 “ w, wn “ w0
and there is an increasing i-chain from wi to wi`1 for i P rn ´ 1s (See Section 2.2).

Since the introduction of BPDs, finding a BPD analogue of the Fomin-Stanley con-
struction has been an open problem. Instead of the nil-Coexter algebra, we consider the
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Fomin-Kirillov algebra En [4]. It is generated by di,j for 1 ď i ă j ď n and has a right
action on QrSns denoted as d. Define the following elements in Qrx1, ¨ ¨ ¨ , xn´1s b En:

Ripxiq :“ pxi ` d1,i`1 ` ¨ ¨ ¨ ` di,i`1qpxi ` d1,i`2 ` ¨ ¨ ¨ ` di,i`2q ¨ ¨ ¨ pxi ` d1,n ` ¨ ¨ ¨ ` di,nq, and

SBPD :“ w0 d pR1px1qR2px2q ¨ ¨ ¨ Rn´1pxn´1qq.

Combinatorially, after expanding SBPD, we show each term xαw naturally corresponds
to a D P BPDpwq with α “ wtpDq. Algebraically, we establish Theorem 4.3, obtaining an
operator theoretic proof of the BPD formula.

Theorem 4.3. We have SBPD “
ř

wPSn
Sww.

A crucial tool to understand SBPD is a novel encoding algorithm Φ that encodes each
element of BPDpwq as partial fillings of a staircase grid which we call flagged tableaux. We
denote the image of BPDpwq under Φ as FTpwq. Each T P FTpwq corresponds to a chain
in the Bruhat order denoted as chainpTq “ pwn, ¨ ¨ ¨ , w1q. Then we establish Theorem 3.9,
obtaining a BPD analogue of Lenart and Sottile’s work.

Theorem 3.9. The map chainp¨q is a bijection from FTpwq to chains pwn, ¨ ¨ ¨ , w1q in the Bruhat
order where wn “ w, w1 “ w0 and there is an increasing i-chain from wi`1 to wi. Consequently,
chain ˝ Φ is a bijection from BPDpwq to such chains.

In other words, PDs and BPDs can both be viewed as certain chains in the Bruhat
order, exhibiting a duality. Finally, we use Lenart’s growth diagram [13] to obtain a
bijection between these chains, obtaining a bijection between PDpwq and BPDpwq. We
conjecture this bijection agrees with the existing bijection of Gao and Huang [7]. This
conjecture has been verified on S7.

Organization: In §2, we cover some necessary background. In §3, we define the
encoding map Φ : BPDpwq Ñ FTpwq and establish Theorem 3.9. In §4, we construct our
BPD analogue of the Fomin-Stanley construction. In §5, we use Lenart’s growth diagram
to build a bijection between PDpwq and BPDpwq. In §6, we describe one conjecture that
extends the chain formulas of Sw to double Schubert polynomials.

2 Background

2.1 Fomin-Stanley construction

A reduced word of w P Sn is a word i1i2 ¨ ¨ ¨ il such that w “ si1 ¨ ¨ ¨ sil and l is minimized.
One can read off a reduced word of w from every P P PDpwq as follows: Go through
its crossings from top to bottom and right to left in each row. For a crossing in row r
column c, read off r ` c ´ 1. For instance, the PD in Example 1.1 gives 41324 which is a
reduced word of r2, 5, 1, 4, 3s.
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The nil-Coexter algebra Nn is generated by u1, ¨ ¨ ¨ , un´1 satisfying:

$

’

&

’

%

u2
i “ 0,

uiuj “ ujui if |i ´ j| ě 2 ,
uiui`1ui “ ui`1uiui`1 if i P rn ´ 2s.

Consider a “ ui1 ¨ ¨ ¨ uil P Nn, we have a ‰ 0 if and only if i1 ¨ ¨ ¨ il is a reduced word of
some w P Sn. In this case, a “ uj1 ¨ ¨ ¨ ujl1 if and only if j1 ¨ ¨ ¨ jl1 is a reduced word for the
same w. Fomin and Stanley [6] defined the following elements in Qrx1, ¨ ¨ ¨ , xn´1s b Nn:

Aipxiq :“ p1 ` xiun´1qp1 ` xiun´2q ¨ ¨ ¨ p1 ` xiuiq for i P rn ´ 1s, and

SPD :“ A1px1qA2px2q ¨ ¨ ¨ An´1pxn´1q.

Combinatorially, SPD “
ř

P xwtpPqui1 ¨ ¨ ¨ uil where the sum runs over all PD and i1 ¨ ¨ ¨ il is
the reduced word read off from the PD. Algebraically, Fomin and Stanley showed that

SPD
“

ÿ

wPSn

Swui1 ¨ ¨ ¨ uil , (2.1)

where i1 ¨ ¨ ¨ il is an arbitrary reduced word of w. This formula would imply the PD for-
mula in Theorem 1.2. Fomin and Stanley proved (2.1) by showing BipS

PDq “ SPDui for
any i P rn ´ 1s. This equation then reduces to BipRipxiqRi`1pxi`1qq “ RipxiqRi`1pxi`1qui.
In §4, we present the BPD analogue of (2.1) and establish our equation in a similar way.

2.2 Bruhat order

For 1 ď i ă j ď n, we use ti,j to denote the permutation that swaps i and j. For w P Sn,
let ℓpwq :“ |tpi, jq : i ă j, wpiq ą wpjq|. Let ď be the Bruhat order on Sn, where the cover
relation is given by u Ì w if w “ uti,j and ℓpwq “ ℓpuq ` 1. We say C “ pw1, w2, ¨ ¨ ¨ , wdq is
a Bruhat chain from w1 to wd if w1 ď w2 ď ¨ ¨ ¨ ď wd. The length of C is d ´ 1. The weight of
C, denoted as wtpCq, is a sequence of length d ´ 1 where the ith entry is ℓpwi`1q ´ ℓpwiq.
The chain is saturated if w1 Ì w2 Ì ¨ ¨ ¨ Ì wd. We may represent a saturated chain as

w1
ta1,b1
ÝÝÝÑ w2

ta2,b2
ÝÝÝÑ ¨ ¨ ¨

tad´1,bd´1
ÝÝÝÝÝÝÑ wd,

where ai ă bi and wi`1 “ witai,bi .
Take k P rn ´ 1s. We use ďk to denote the k-Bruhat order on Sn. Its cover relation

is given by u Ìk w if u Ì w and w “ uti,j for some i ď k ă j. Similarly, we can define k-
Bruhat chains and saturated k-Bruhat chains. For simplicity, we say “k-chains” in place
of “k-Bruhat chains”. The k-Bruhat order can be used to describe the Monk’s rule [15]:
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Swpx1 ` ¨ ¨ ¨ ` xkq “
ř

wÌku Su for any w P Sn and k P rn ´ 1s such that wpjq “ n for some
j ą k. Sottile generalized the Monk’s rule by considering multiplying Sw with

hdpx1, ¨ ¨ ¨ , xkq :“
ÿ

1ďi1ď¨¨¨ďidďk

xi1 ¨ ¨ ¨ xid ,

where k P rn ´ 1s and d P Zą0. Say a saturated k-chain w1
ta1,b1
ÝÝÝÑ w2

ta2,b2
ÝÝÝÑ ¨ ¨ ¨

tad´1,bd´1
ÝÝÝÝÝÝÑ wd

is increasing if w1pa1q ă w2pa2q ă ¨ ¨ ¨ ă wd´1pad´1q. In other words, the smaller number
swapped is increasing. It is not hard to show for any u, w P Sn and k P rn ´ 1s, there is at
most one increasing k-chain from u to w.

Theorem 2.1. [16] Take u P Sn and d P Zě0. For any k P rn ´ 1s such that n, n ´ 1, ¨ ¨ ¨ , n ´

d ` 1 are among wpk ` 1q, ¨ ¨ ¨ , wpnq, then

Su ˆ hdpx1, ¨ ¨ ¨ , xkq “
ÿ

w
Sw.

The sum is over all w such that there is an increasing k-chain from u to w with length d.

Lenart and Sottile [14] view PDs as certain Bruhat chains. We introduce the following
definition to describe their chains in a more general way.

Definition 2.2. We say a Bruhat chain C “ pw1, w2, ¨ ¨ ¨ , wl, wl`1q is compatible with a se-
quence pk1, ¨ ¨ ¨ , klq if there exists an increasing ki-chain from wi to wi`1 for each i P rls.

Lenart and Sottile [14] described a bijection from PDpwq to chains from w to w0 com-
patible with p1, 2, ¨ ¨ ¨ , n ´ 1q: Take P P PDpwq. For i P rns, let Pi be the pipedream
obtained from P by changing all bumps above row i into crossings. Let wi be the per-
mutation associated with Pi. Then pw1, ¨ ¨ ¨ , wnq is the resulting chain. In addition, if
we change bumps in row i of Pi into crossings from left to right, permutations of the
intermediate pipedreams will form the increasing i-chain from wi to wi`1.

Example 2.3. Let P be the pipedream in Example 1.1. Then its corresponding chain
is pr2, 5, 1, 4, 3s, r5, 3, 1, 4, 2s, r5, 4, 1, 3, 2s, r5, 4, 3, 2, 1s, r5, 4, 3, 2, 1sq. The increasing 1-chain

from r2, 5, 1, 4, 3s to r5, 3, 1, 4, 2s is given by: r2, 5, 1, 4, 3s
t1,5
ÝÝÑ r3, 5, 1, 4, 2s

t1,2
ÝÝÑ r5, 3, 1, 4, 2s.

If a pipedream P is sent to the chain C, then wtpCq “ pn ´ 1, ¨ ¨ ¨ , 1q ´wtpPq where the
subtraction is entry-wise. Thus, this bijection recovers a result of Bergeron and Sottile:

Corollary 2.4. [2] For w P Sn, Sw “
ř

C xpn´1,¨¨¨ ,1q´wtpCq, where the sum is over all chains
from w to w0 compatible with p1, 2, ¨ ¨ ¨ , n ´ 1q.

We end this section by extending Corollary 2.4 using the following observation:

Proposition 2.5. Pick u, w P Sn, k1, k2 P rn ´ 1s and d1, d2 P Zě0. The number of chains from
u to w compatible with pk1, k2q and has weight pd1, d2q matches the number of chains from u to
w compatible with pk2, k1q and has weight pd2, d1q.
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Proof. By Theorem 2.1, the number of chains pu, v, wq compatible with pk1, k2q and has
weight pd1, d2q is the coefficient of Sw in Su ˆ hd1px1, ¨ ¨ ¨ , xk1q ˆ hd2px1, ¨ ¨ ¨ , xk2q. The
proof is finished by the commutativity of polynomial multiplication.

Since we have two sets with the same size, it would be natural to ask:
Problem 2.6. Find an explicit bijection between the two set of chains in Proposition 2.5.

In §5, we show Lenart’s growth diagram [13] solves Problem 2.6 in a special case.
Combining Corollary 2.4 and Proposition 2.5, we deduce:

Corollary 2.7. Take w P Sn and γ P Sn´1. If pd1, ¨ ¨ ¨ , dn´1q is a sequence of numbers, let
γ´1pd1, ¨ ¨ ¨ , dn´1q :“ pdγ´1p1q, ¨ ¨ ¨ , dγ´1pn´1qq. We also view γ as a sequence of numbers. Then

Sw “
ř

C xpn´1,¨¨¨ ,1q´γ´1pwtpCqq, summing over all chains from w to w0 compatible with γ.

This corollary implies that we have a combinatorial formula of Sw involving Bruhat
chains for each choice of γ P Sn´1. Under Lenart and Sottile’s bijection, the PD formula
is identified with the Bruhat chain formula when γ “ r1, 2, ¨ ¨ ¨ , n ´ 1s. In §3, we identify
the BPD formula with the Bruhat chain formula when γ “ rn ´ 1, n ´ 2, ¨ ¨ ¨ , 1s.

3 Encoding BPDs as flagged tableaux and chains

We first encode each BPD as the following combinatorial object.
Definition 3.1. A flagged tableau is a staircase grid with a cell in row i column j if i ` j ď n.
Moreover, each cell in row i is empty or filled with a number in ris.

We define an encoding map Φ from BPDpwq to the set of flagged tableaux.
Definition 3.2. Take D P BPDpwq for some w P Sn. For i P rns, there are pi ´ 1q pipes
exiting from the top from row i of D, so there are pi ´ 1q , and . We mark these
cells, and then mark the rightmost unmarked cell in row i. There will be n ´ i unmarked

cells. To fill the cell in row i column j of ΦpDq, we look at the j
th

leftmost unmarked cell
in row i of D. If it is a blank, we leave the cell in ΦpDq unfilled. Otherwise, it contains a
pipe that ends in row p for some p ď i. We fill the cell in ΦpDq by p.
Example 3.3. Assume n “ 6. Take D P BPDpr2, 1, 6, 5, 3, 4sq as depicted on the left. Then
we perform the encoding algorithm and mark certain cells red. Finally, we obtain ΦpDq.

ΦpDq =

1 1

1 2

2 2 2

1

5
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To precisely describe the image of BPDpwq under Φ, we need the following definition.

Definition 3.4. The reading word of a flagged tableau T, denoted as wordpTq, is a sequence
of pairs obtained as follows. Go through entries of T from top to bottom, and right to
left in each row. When we see the number i in column c, we write the pair pi, n ` 1 ´ cq.

By the definition of flagged tableaux, for each pair in the reading word, the first entry
is smaller than the second.

Example 3.5. In Example 3.3, wordpΦpDqq “ p1, 2qp1, 3qp2, 3qp1, 4qp2, 4qp2, 5qp2, 6qp1, 6qp5, 6q.

Let T be a flagged tableau with reading word pa1, b1q, ¨ ¨ ¨ , pad, bdq. For i P rds, we let
wi “ w0ta1,b1 ¨ ¨ ¨ tai,bi . Then we say T is associated with the permutation wd if

wd
tad ,bd
ÝÝÝÑ wd´1

tad´1,bd´1
ÝÝÝÝÝÝÑ ¨ ¨ ¨

ta2,b2
ÝÝÝÑ w1

ta1,b1
ÝÝÝÑ w0

is a saturated Bruhat chain. Let FTpwq consist of all flagged tableaux associated with w.

Example 3.6. In Example 3.3, ΦpDq is associated with r2, 1, 6, 5, 3, 4s because:

r2, 1, 6, 5, 3, 4s
t5,6
ÝÝÑ r2, 1, 6, 5, 4, 3s

t1,6
ÝÝÑ r3, 1, 6, 5, 4, 2s

t2,6
ÝÝÑ r3, 2, 6, 5, 4, 1s

t2,5
ÝÝÑ r3, 4, 6, 5, 2, 1s

t2,4
ÝÝÑr3, 5, 6, 4, 2, 1s

t1,4
ÝÝÑ r4, 5, 6, 3, 2, 1s

t2,3
ÝÝÑ r4, 6, 5, 3, 2, 1s

t1,3
ÝÝÑ r5, 6, 4, 3, 2, 1s

t1,2
ÝÝÑ r6, 5, 4, 3, 2, 1s

is a saturated Bruhat chain from r2, 1, 6, 5, 3, 4s to w0. Notice that D P BPDpr2, 1, 6, 5, 3, 4sq.

For a flagged tableau T, define the weight of T, denoted as wtpTq, to be a sequence of
n ´ 1 numbers whose ith entry is the number of blanks in row i. Then we have:

Proposition 3.7. For w P Sn, Φ is a weight-preserving bijection from BPDpwq to FTpwq.

We may turn T into a chain compatible with pn ´ 1, ¨ ¨ ¨ , 2, 1q as follows. Suppose
T has reading word pa1, b1q, ¨ ¨ ¨ , pad, bdq and set wi “ w0ta1,b1 ¨ ¨ ¨ tai,bi for i P rds. Let mi
be the number of non-empty cells above row i ` 1 of T for i “ 0, 1. ¨ ¨ ¨ , n ´ 1. Clearly,
pwmi , wmi´1, ¨ ¨ ¨ , wmi´1q is an i-chain. Moreover, we can check it is an increasing i-chain.
Then define chainpTq :“ pwmn´1 , ¨ ¨ ¨ , wm1 , w0q, which is compatible with pn ´ 1, ¨ ¨ ¨ , 2, 1q.

Example 3.8. Let T be the ΦpDq in Example 3.3. Then chainpTq is

pr2, 1, 6, 5, 3, 4s, r2, 1, 6, 5, 4, 3s, r3, 1, 6, 5, 4, 2s, r3, 5, 6, 4, 2, 1s, r4, 6, 5, 3, 2, 1s, r6, 5, 4, 3, 2, 1sq.

Theorem 3.9. The map chainp¨q is a bijection from FTpwq to Bruhat chains from w to w0 com-
patible with pn ´ 1, ¨ ¨ ¨ , 2, 1q. Consequently, chain ˝ Φ is a bijection from BPDpwq to such chains.

The bijection chain ˝ Φ is an analogue of Lenart and Sottile’s bijection [14] on PDpwq.
Notice that for D P BPDpwq, if wtpDq “ pα1, ¨ ¨ ¨ , αn´1q then

wtpchainpΦpDqqq “ p1 ´ αn´1, ¨ ¨ ¨ , n ´ 2 ´ α2, n ´ 1 ´ α1q.

Thus, we have identified the BPD formula of Sw with the Bruhat chain formula in
Corollary 2.7 with γ “ rn ´ 1, ¨ ¨ ¨ , 2, 1s.
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4 Analogue of Fomin-Stanley construction on BPDs

We now construct SBPD, our analogue of SPD, as a generating function of the flagged
tableaux, or equivalently BPDs. Instead of the nil-Coexter algebra Nn, our construction
uses the Fomin-Kirillov algebra [5] En, generated by tdi,j : 1 ď i ă j ď nu satisfying:

$

’

’

’

’

&

’

’

’

’

%

d2
i,j “ 0 if i ă j ,

di,jdj,k “ di,kdi,j ` dj,kdi,k if i ă j ă k ,
dj,kdi,j “ di,jdi,k ` di,kdj,k if i ă j ă k ,
di,jdk,l “ dk,ldi,j if i ă j, k ă l and i, j, k, l distinct.

Fomin and Kirillov described an action of En on QrSns. In this paper, we adopt a
slightly different convention and consider a right action of En on QrSns. For w P Sn,

w d di,j :“

#

wti,j if wti,j Ì w
0 otherwise.

Define A :“ Qrx1, ¨ ¨ ¨ , xn´1s b En. It acts on Qrx1, ¨ ¨ ¨ , xn´1srSns from the right: p f wq d

pg b eq “ p f gqpw d eq for any f , g P Qrx1, ¨ ¨ ¨ , xn´1s, w P Sn and e P En. We may identify
En and Qrx1, ¨ ¨ ¨ , xn´1s as subalgebras of A.

Definition 4.1. Take i P rn ´ 1s. For i ă j, define Bi,j P En as Bi,j :“ d1,j ` ¨ ¨ ¨ ` di,j.
Define Ripxiq P A as Ripxiq :“ pxi ` Bi,i`1qpxi ` Bi,i`2q ¨ ¨ ¨ pxi ` Bi,nq. Finally, define SBPD

P Qrx1, ¨ ¨ ¨ xn´1srSns as SBPD :“ w0 d pR1px1qR2px2q ¨ ¨ ¨ Rn´1pxn´1qq.

We show SBPD is a generating function of flagged tableaux, or equivalently all BPDs:

Proposition 4.2. We have

SBPD
“

ÿ

wPSn

ÿ

TPFTpwq

xwtpTqw “
ÿ

wPSn

ÿ

DPBPDpwq

xwtpDqw.

Proof. If we expand Ripxiq, each term corresponds to one way of filling row i of a flagged
tableau. The expression pxi ` Bi,jq in Ripxiq corresponds to ways of filling the cell at row
i and column n ` 1 ´ j: xi means to leave the box empty and dp,j means to fill it with
p. If we expand R1px1q ¨ ¨ ¨ Rn´1pxn´1q, for each term xαda1,b1 ¨ ¨ ¨ dak,bk

, there is a flagged
tableau T with wtpTq “ xα and wordpTq “ pa1, b1q ¨ ¨ ¨ pak, bkq. Let w “ w0 d da1,b1 ¨ ¨ ¨ dak,bk

.
If w “ 0, we know T is not associated with any permutation. Otherwise, T P FTpwq.
Thus, we have the first equation. The second equation follows from Proposition 3.7.

Now we establish the BPD analogue of (2.1).

Theorem 4.3. We have SBPD “
ř

wPSn
Sww.
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Our proof is similar to the arguments of Fomin and Stanley. Consider a right action
of Nn on Sn with w d ui “ wti,i`1 if wpiq ă wpi ` 1q and w d ui “ 0 otherwise. We may
extend this action to Qrx1, ¨ ¨ ¨ , xn´1srSns by setting f d ui “ f for all f P Qrx1, ¨ ¨ ¨ , xn´1s.
Similar to Fomin and Stanley’s approach, Theorem 4.3 reduces to:

Proposition 4.4. For each i P rn ´ 1s, BipSq “ S d ui.

Proof Sketch. The left hand side is just w0 d R1px1q ¨ ¨ ¨ BipRipxiqRi`1pxi`1qq ¨ ¨ ¨ Rn´1pxn´1q.
We turn the right hand side into w0 d R1px1q ¨ ¨ ¨ Ripxiq ui,i`1 Ri`1pxi`1q ¨ ¨ ¨ Rn´1pxn´1q.
Then we show w0 d R1px1q ¨ ¨ ¨ Ri´1pxi´1q is in the span of terms xαw where xα is a mono-
mial involving x1, ¨ ¨ ¨ , xi´1 and w P Sn satisfies wpi ` 1q ą ¨ ¨ ¨ ą wpnq. We just need

xαw d BippRipxiqRi`1pxi`1qq “ xαw d Ripxiq ui,i`1 Ri`1pxi`1q for such xαw.

We then establish this equation via a complicated but routine computation.

Fomin and Kirillov [4] defined the Dunkl element θi :“ ´
ř

jăi dj,i `
ř

jąi di,j P En for
i P rns. They showed the Dunkl elements θ1, ¨ ¨ ¨ , θn commute with each other. We end
this subsection by providing an alternative way to write SBPD using Dunkl elements.

Proposition 4.5. We have SBPD “ w0 d
ś

1ďiăjďnpxi ´ θjq. Notice that terms multiplied on
the right hand side commute with each other, so the

ś

notation makes sense.

Remark 4.6. Sergey Fomin kindly informed the author that w0 d
ś

1ďiăjďnpxi ´ θjq seems
related to the following variation of Cauchy identity of Schubert polynomials:

ź

1ďiăjďn

pxi ´ yjq “
ÿ

wPSn

Swpx1, ¨ ¨ ¨ , xn´1qSww0p´yn, ¨ ¨ ¨ , ´y2q. (4.1)

Indeed, by the Monk’s rule, (4.1) is equivalent to w0 d
ś

1ďiăjďnpxi ´ θjq “
ř

wPSn
Sww.

In other words, Theorem 4.3 and Proposition 4.5 form an alternative proof of (4.1).

5 Bijection between pipedreams and bumpless pipedreams

In this section, we present a weight preserving bijection between PDpwq and BPDpwq.
By [14] and Theorem 3.9, we just need a weight reversing bijection between chains from
w to w0 compatible with p1, ¨ ¨ ¨ , n ´ 1q and those compatible with pn ´ 1, ¨ ¨ ¨ , 1q.

This task can be done by Lenart’s growth diagram [13], which can be viewed as the
following algorithm. Given k1, k2 P rn ´ 1s and chains C1, C2, where C1 (resp. C2) is
a saturated k1-chain from u to v (resp. k2-chain from v to w), the algorithm outputs a
saturated k2-chain from u to v1 and a saturated k1-chain from v1 to w. Moreover, the
k1-chain (resp. k2-chain) in the output has the same length as C1 (resp. C2).
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Assume C1 “ pu1, ¨ ¨ ¨ , ud1q and C2 “ pw1, ¨ ¨ ¨ , wd2q where ud1 “ w1. We first draw:

u1
k1
ÝÑ u2

k1
ÝÑ ¨ ¨ ¨

k1
ÝÑ ud1´1

k1
ÝÑ w1

k2
ÝÑ w2

k2
ÝÑ ¨ ¨ ¨

k2
ÝÑ wd2 .

We start from this labeled chain and apply a local move: Find a part of the chain that

looks like a k1
ÝÑ b k2

ÝÑ c. We must have a Ìk1 b Ìk2 c. There exists a unique b1 P Sn
such that b1 ‰ b and a Ì b1 Ì c. If a Ìk2 b1 Ìk1 c, we replace this part of the chain

by a k2
ÝÑ b1 k1

ÝÑ c. Otherwise, we must have a Ìk2 b1 Ìk1 c and we replace this part by

a k2
ÝÑ b k1

ÝÑ c. We keep applying this local move until the labeled chain looks like:

u1
1

k2
ÝÑ u1

2
k2
ÝÑ ¨ ¨ ¨

k2
ÝÑ u1

d2´1
k2
ÝÑ w1

1
k1
ÝÑ w1

2
k1
ÝÑ ¨ ¨ ¨

k1
ÝÑ w1

d1
.

Then we output the k2-chain pu1
1, ¨ ¨ ¨ , u1

d2´1, w1
1q and the k1-chain pw1

1, ¨ ¨ ¨ , w1
d1

q.

Example 5.1. Say the inputs are: k1 “ 2, k2 “ 3, C1 “ pr2, 1, 4, 3s, r2, 4, 1, 3s, r3, 4, 1, 2sq, and
C2 “ pr3, 4, 1, 2s, r3, 4, 2, 1sq. We start from the following labeled chain and apply local
moves:

r2, 1, 4, 3s
2
ÝÑ r2, 4, 1, 3s

2
ÝÑ r3, 4, 1, 2s

3
ÝÑ r3, 4, 2, 1s.

r2, 1, 4, 3s
2
ÝÑ r2, 4, 1, 3s

3
ÝÑ r2, 4, 3, 1s

2
ÝÑ r3, 4, 2, 1s,

r2, 1, 4, 3s
3
ÝÑ r2, 3, 4, 1s

2
ÝÑ r2, 4, 3, 1s

2
ÝÑ r3, 4, 2, 1s.

Therefore, the outputs are pr2, 1, 4, 3s, r2, 3, 4, 1sq and pr2, 3, 4, 1s, r2, 4, 3, 1s, r3, 4, 2, 1sq.

We may use Lenart’s growth diagram to define a map growthk1,k2
.

Definition 5.2. Take a chain pu, v, wq that is compatible with pk1, k2q. Let C1 (resp. C2) be
the increasing k1-chain (resp. k2-chain) from u to v (resp. v to w). Input C1, C2, k1, k2 to
Lenart’s growth diagram, obtaining a k2-chain from u to v1 and a k1-chain from v1 to w.
Then define growthk1,k2

pu, v, wq as pu, v1, wq.

The map growthk1,k2
does not solve Problem 2.6. When pu, v, wq is compatible with

pk1, k2q, growthk1,k2
pu, v, wq might not be compatible with pk2, k1q: By Example 5.1, we

have

growth2,3pr2, 1, 4, 3s, r3, 4, 1, 2s, r3, 4, 2, 1sq “ pr2, 1, 4, 3s, r2, 3, 4, 1s, r3, 4, 2, 1sq,

which is not compatible with p3, 2q, but pr2, 1, 4, 3s, r3, 4, 1, 2s, r3, 4, 2, 1sq is compatible with
p2, 3q. Nevertheless, growthk1,k2

solves Problem 2.6 in the following special case.

Lemma 5.3. Take 1 ď k2 ă k1 ď n ´ 1 and u, w P Sn such that wpk1 ` 1q ą wpk1 ` 2q ą ¨ ¨ ¨ ą

wpnq and wpjq “ n ` 1 ´ j for each j P rk2s. Then growthk1,k2
is a weight reversing bijection from

chains pu, v, wq compatible with pk1, k2q to chains pu, v1, wq compatible with pk2, k1q.
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Now we use growthk1,k2
to derive a map Growth. This map is defined on a chain

C “ pwn, ¨ ¨ ¨ , w1q from w to w0 compatible with pn ´ 1, ¨ ¨ ¨ , 2, 1q. It first applies growth2,1,
growth3,1, ¨ ¨ ¨ , growthn´1,1 to get a chain compatible with p1, n ´ 1, ¨ ¨ ¨ , 2q. Then it applies
growth3,2, ¨ ¨ ¨ , growthn´1,2 to get a chain compatible with p1, 2, n ´ 1, ¨ ¨ ¨ , 3q. Eventually, it
produces a chain compatible with p1, 2, ¨ ¨ ¨ , n ´ 1q defined as GrowthpCq. We can check
when we apply each growthk1,k2

, the condition in Lemma 5.3 is satisfied.

Proposition 5.4. For w P Sn, the map Growth is a weight-reversing bijection from tchains from
w to w0 compatible with pn ´ 1, ¨ ¨ ¨ , 1qu to tchains from w to w0 compatible with p1, ¨ ¨ ¨ , n ´ 1qu.

By [14] and Theorem 3.9, Growth leads to a weight preserving bijection between PDpwq

and BPDpwq. We conjecture this map agrees with the existing bijection of Gao-Huang [7]
and have checked our conjecture up to S7.
Example 5.5. Consider the chain pr2, 1, 4, 3s, r2, 3, 4, 1s, r2, 4, 3, 1s, r4, 3, 2, 1sq which is com-
patible with p3, 2, 1q and has weight p1, 1, 2q. We apply growth2,1 and then growth3,1
to get pr2, 1, 4, 3s, r4, 1, 3, 2s, r4, 2, 3, 1s, r4, 3, 2, 1sq which is compatible with p1, 3, 2q and
has weight p2, 1, 1q. Finally, use growth3,2 to get pr2, 1, 4, 3s, r4, 1, 3, 2s, r4, 3, 1, 2s, r4, 3, 2, 1sq

which is compatible with p1, 2, 3q and has weight p2, 1, 1q.

6 Extending Corollary 2.7 to double Schubert polynomials

The double Schubert polynomial Swpx, yq is in x1, ¨ ¨ ¨ , xn´1 and y1, ¨ ¨ ¨ , yn´1. It recovers Sw
after setting each yi to 0 and can be computed using PDs and BPDs: For P P PDpwq

(resp. BPDpwq), let WTpPq be the product over (resp. ) in P, where the tile in row i
column j gives pxi ´ yjq. By [9, 17], Swpx, yq “

ř

PPPDpwq WTpPq “
ř

PPBPDpwq WTpPq.
Take γ P Sn´1 and let C “ pw1, ¨ ¨ ¨ , wnq be a chain compatible with γ. Define WTγpCq

as
śn´1

i“1
ś

tpxγi ´ ywiptqq, where t runs over all t ą γi such that wiptq “ wi`1ptq. After
setting all yi to 0, WTγpCq recovers xpn´1,¨¨¨ ,1q´γ´1pwtpCqq. The following conjecture extends
Corollary 2.7 and has been checked for all w P Sn for n ď 8 and all γ P Sn´1:

Conjecture 6.1. For γ P Sn´1, we have Sw px, yq “
ř

C:chain from w to w0 compatible with γ WTγpCq.

This conjecture agrees with the PD and BPD formula when γ “ r1, ¨ ¨ ¨ , n ´ 1s and
γ “ rn ´ 1, ¨ ¨ ¨ , 1s respectively via the bijections in [14] and Theorem 3.9.
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