Morava's Orbit Picture and Morava Stabilizer groups

Scotty Tilton
UCSD

Reminders from last time

Lazard Ring \(L \cong \mathbb{Z} \langle x_1, x_2, \ldots \rangle \cong \text{MU}^* \)

Universal group law \(G(x, y) \) over \(L \) s.t. a formal group law

Four \(R, \exists! \theta : L \to R \) s.t. \(F(x, y) = \sum \theta(a_i) x^i y^j \)

where \(a_i, j \) are the coefficients of universal formal group law

\[
\Gamma = \left(\sum b_i \right) \quad \text{where} \quad b_i \in \mathbb{Z}/3, \quad 0
\]

\(\Gamma \approx L \), \(\gamma \mapsto \theta \gamma \) induced by \(\delta^{-1} G(\gamma(x), \gamma(y)) \)

log of a formal group law is a power series s.t.

\[
\log_F(F(x, y)) = \log_F(x) + \log_F(y)
\]
\[\langle n \rangle (x) = F(x, \langle n-1 \rangle (x)) \text{ with } \langle 1 \rangle (x) = x. \]

height \[F(x,y) \text{ formal group law has height } h \text{ if } \langle p \rangle (x) = ax^p + (\text{higher terms}) \]

\[w/a \text{ invertible.} \]

\[\forall n \text{ given } p \text{, coefficient of } x^p \text{ in } G(x,y) \]

\[\mathcal{L} \Gamma \text{ category of finitely presented, graded } L \text{-modules} \]

\[w/a \text{ compatible } \Gamma \text{ action.} \]

Class-o-Formal group laws \[\underline{\text{Two formal group laws over } } F_p \text{ are isomorphic } \Leftrightarrow \text{ same height.} \]

\textbf{Invariant prime ideal theorem:}

The only prime ideals in \(L \) which occur in various categories \(\Gamma \approx L \) are \(I_{p,n} := (p, v_1, \ldots, v_{n-1}) \) where \(p \) is prime and \(0 \leq n \leq \infty \).

\[I_0 = (0), \quad I_{p,0} = (p, v_1, \ldots) \]

Moreover, in \(L/I_{p,n} \) for \(n > 0 \), the subgroup fixed by \(\Gamma \) is \(\mathbb{Z}/(p) [v_n] \).

In \(L \), the invariant subgroup is \(\mathbb{Z} \).
Every module M in $C \Gamma$ admits a finite filtration by submodules in $C \Gamma$

$$0 = F_0 M \subset F_1 M \subset \cdots \subset F_n M = M$$

such that each $F_i M / F_{i-1} M$ is a suspension of k/p^n for some p, n.

Takeaway: Can localize at p and study $V_p = Z(p) [v_1, v_2, \ldots]$ aka BP*.

Chapter Four
4.1 The action of Γ on L

Notation
Let $H_2/L := \text{Hom}_{\text{ring}}(L, \mathbb{Z})$

Definition
An automorphism of a formal group law F is a power series $f(x)$ satisfying $f(F(x, y)) = F(f(x), f(y))$.

It is strict if it has the form $x + O(x^2)$

$$f(x) = x + \sum_{i \geq 2} a_ix^i$$

Prop 4.1.1 Let $\Gamma \curvearrowright H_2/L$ be the action induced by $\Gamma \curvearrowright L$.

1. $H_2/L \cong \{ \text{Formal group laws over } \mathbb{Z} \}$
 \[\Theta : L \to L \]
 \[\Theta(x) \text{ formal} \]

2. $F, G \in H_2/L$ are in same Γ orbit iff $F \cong G$ over \mathbb{Z}.

3. $\text{stab}_\Gamma(\Theta) = \text{strict automorphisms in group of } \Theta \in H_2/L$.

4. Strict automorphism groups of isomorphic formal group laws are conjugate in Γ.
Classification of formal group laws over \(\mathbb{Z} \) is tough, but we classified the over \(k := \text{GF}(p) \).

Prop 4.1.2 The formal group law over \(k \) corresponding to \(\Theta \in H_k L \) has height \(n \) if and only if \(\Theta(v_i) = 0 \) for \(i \in n \) and \(\Theta(v_n) \neq 0 \).

Moreover, each \(v_n \in L \) is indecomposable, i.e., is a unit multiple (in \(\mathbb{Z}(p) \)) of \(x_p^{n-1} + \text{decomposables} \).
4.2 Morava Stabilizer Groups

The nth Morava stabilizer group S_n is the strict automorphism group of a height n formal group law over $K = \mathbb{F}_p$:

$$f(F(x,y)) = F(x^p, fy).$$

It is contained in a division algebra D_n over the p-adic numbers \mathbb{Q}_p.

We'll get there.

Recall:

- $F_{p^n} = \mathbb{F}_p[\sqrt[n]{5}]$ where $\sqrt[n]{5}$ is a (p^n-1)th root of 1.
- $\frac{5^{p^n-1} - 1}{5 - 1} = 1$
- $\text{Gal}(F_{p^n}/\mathbb{F}_p)$ is cyclic of order n generated by Frobenius automorphism $x \mapsto x^p$.
- There is a degree n extension of the p-adic integers \mathbb{Z}_p, which we denote $W(F_{p^n})$ by adjoining a (p^n-1)st root of -1, 5 where $5 \equiv \sqrt[n]{5} \mod p$.
- The Frobenius automorphism has a lifting σ, which fixes \mathbb{Z}_p, $\sigma(5) = 5^p$ and $\sigma(x) \equiv x^p \mod p$ for all $x \in W(F_{p^n})$.
The fraction field of $W(F_{p^n})$ is denoted K_n.

Let $K_n \langle S \rangle$ be K_n adjoined with a noncommuting power series variable S where

$$Sx = \sigma(x)S.$$

$$S^n x = \sigma^n(x) S^n = x S^n$$

(Note S commutes with $Q_p \subset K_n$ and S^n commutes with everything.)

The division algebra

$$D_n := K_n \langle S \rangle/(S^n - p).$$

Note: This is a rank n^2 algebra over Q_p with center Q_p. Rav86 6.2.12

$$E_n := W(F_{p^n}) \langle S \rangle/(S^n - p) \subset D_n.$$

E_n is a complete local ring with maximum ideal $\langle S \rangle$ and fraction field F_{p^n}.

Every $a \in E_n$ can be written as
\[
a = \sum_{i=0}^{n-1} a_i S^i, \quad a_i \in W(\mathbb{F}_p^n).
\]

OR

\[
a = \sum_{i \geq 0} e_i S^i, \quad \text{with } e_i \in W(\mathbb{F}_p^n).
\]

where $e_i^p - e_i = 0$ or $e_i = 0$ or a root -1.

\[
E_n^\times = \left\{ \sum_{i \geq 0} e_i S^i \mid e_0 \neq 0 \right\} \text{ or } \left\{ \sum_{i \geq 0} a_i S^i \mid a_0 \in W(\mathbb{F}_p^n)^\times \right\}.
\]

Proposition 4.25 The full automorphism group of a formal group law over \mathbb{K} of height h is isomorphic to E_n^\times.

The strict automorphism group S_n is isomorphic to the subgroup
\[
\left\{ 1 + \sum_{i \geq 0} e_i S^i \in E_n^\times \mid e_i^p = e_i = 0 \right\} \leq E_n^\times
\]
Consider each \(e_i : S_n \xrightarrow{cts} F_p^n \). The ring of all such functions is

\[
S(n) := F_p^n [e_1, e_2, e_3, \ldots] / (e_i^{p^n} - e_i)
\]

This is a Hopf algebra over \(F_p^n \) with coproduct induced by \(S_n \).

Compare to Morava K-theory

\[
\Sigma(n) = K(n)[t_1, t_2, \ldots] / (t_i^{p^n} - u_i^{p^n} - t_i)
\]

and then

\[
S(n) = \Sigma(n) \otimes K(n_+)^{F_p^n} \quad (v_i \mapsto 1)
\]

Let's see how \(S_n \) (strict automorphisms of formal group laws) acts on a formal group law of height \(n \), \(F_n \).

Making \(F_n \)

Let \(F \) be a formal group law over \(\mathbb{Z}[x] \) with

\[
\log_F(x) = \sum_{i=0} \frac{x^{p^{ni}}}{pi}
\]

Then \(F_n \) is obtained by reducing \(F \mod p \) and tensoring with \(F_p^n \).
An automorphism e of F_n is a power series

$$e(x) \in \mathbb{F}_p [[x]]$$

satisfying

$$e(F_n(x,y)) = F_n(e(x), e(y)).$$

So, given $e = 1 + \sum_{i>0} e_i S^i \in S_n$

$$e(x) = \sum_{i\geq 0} F_n e_i x^i = F(e_0 x, F e_1 x^2) \cdots$$

(Notation $x +^F y = F(x, y)$)

See more in Rav 86 Appdx 2.

4.3 Cohomological Properties of S_n.

(to be used by Arseniy and Shangjie later on).

(3 big theorems)

Note: Π is essentially the multiplication in MU theory. Similarly, S_n is essentially the multiplication in Morava-K-theory. How?
\[F_k(u)_* \cdot (x) := k(u)_* \cdot (x) \otimes k(u)_* \rightarrow F_{p^n} \]

Legro: of multiplicative operations here is precisely S_n.

Remark \(F_{p^n} \) is essential. (Larger or smaller, we lose)

- Topology of S_n matters in computation.
- You can think of S_n as a p-adic Lie group.

La 265

Let $H^*(S_n)$ denote the nod p cohomology of S_n and check out Rau 86 Chapter 6 for more.

Theorem 4.3.2

a) $H^*(S_n)$ is a finitely generated algebra.

b) If $p \not| n$, then

\[
H^i(S_n) = \begin{cases}
0 & i > n^2 \\
H^{n^2-i}(S_n) & 0 \leq i \leq n^2
\end{cases}
\]

Poincaré Duality

If $p \not| n$, then $H^*(S_n)$ is periodic. i.e.

There exists $i > 0$ s.t. $H^*(S_n)$ is a free module over $\mathbb{Z}/(p)[x]$.

c) Every sufficiently small open subgroup is cohomologically abelian i.e., same cohomology as $\mathbb{Z}/(p)^n$.

d) Every suf. small open subgroup is cohomologically abelian i.e., same cohomology as $\mathbb{Z}/(p)^n$.

E. L.
Theorem 4.3.3 \[\text{Let } S_{n,i} \subset S_n, i \geq 1 \text{ be the subgroup of } E_n^* \text{ that } s \equiv 1 \mod (S)^i. \]

i) $S_{n,i}$ are cofinal in the set of open subgroups of S_n.

ii) The ring of cts. \(p^n\)-valued functions is

$$S(n, i) = S(n) / (e_j)_{j < i}$$

iii) If $i > \frac{pn}{2p-2}$, the cohomology of $S_{n,i}$ is an exterior algebra on n^2 germs.

iv) Each $S_{n,i}$ is open and normal and

$$[S_{n,i} : S_{n,\infty}] = p^{ni} \text{ and } S_{n,\infty} / S_{n,i} \text{ is abelian.}$$

Theorem 4.3.4 \[\text{All finite abelian subgroups of } S_n \text{ are cyclic.} \]

S_n contains an element of order p^{i+1} iff $p^i(p-1) \mid n$.
I hope you have a picture of these things. Thanks!

\[\text{Alg} \quad A \otimes A \rightarrow A \]
\[\text{Coalg} \quad A \leftrightarrow \text{coal} \]
\[A \rightarrow A \otimes A \]