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The Selberg integral is
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where A, ={t €e R?|0 <t, <--- <t; <1}. The Selberg integral is a generalization of
the beta function. It can be calculated explicitly,
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The Selberg integral has many applications, see [AT], [AZ, A4, D, DF1, DEZ, M, §]. In

this paper, we present an elliptic version of the Selberg integral.
Let 9 (¢, 7) be the first Jacobi theta function [WW]],
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Introduce special functions
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Here " denotes the derivative with respect to the first argument.
Let k > 2 be an integer. The theta functions
(A7) = D FUTEITRAIEIN i € 226,
JEL
form a basis of the theta functions of level k.
For a positive integer p, the elliptic Selberg integral I,(A, 7) is the integral,
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The branch of the logarithm is chosen in such a way that arg (E(t,7)) — 0 ast — 07,
and the integral is understood as a natural analytic continuation.[]
Theorem 1. We have
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The theorem is a generalization of theorem 13 in [EFVI]. The proof is based on the
following remarks. Consider the heat equation

ou 02
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It is known that this equation has a one dimensional space of solutions u(\, 7) which
are holomorphic theta functions of level 2(p + 1),

u(A+2,7) = u(\, 1), u(\ 4 27, 7) = e~ TN 00 1)

and Weyl skew-symmetric, u(—\,7) = (—=1)P"u(), 7), see [EVI, VY. The space is
called the space of conformal blocks. Clearly the right hand side of ([l) has these prop-
erties. According to [FVI], the left hand side of ([l) also has these properties. Thus the
two functions are proportional. The coefficient of proportionality is easily calculated in
the limit 7 — 700.

Ami(p + 1) =— — (A7) +plp+ )P (A, T)u(N, 7).
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