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Green’s conjecture

• Fix alg. closed field k of characteristic 0.

• C is a (smooth) genus g ≥ 2 curve with canonical bundle ωC .

• The canonical ring ΓC =
⊕

d≥0 H0(C ;ω⊗dC ) is finitely

generated over A = Sym H0(C ;ωC ) ∼= k[x1, . . . , xg ].

• We’re concerned with vanishing of Betti numbers

βi ,j(C ) = dimk TorAi (ΓC , k)j .

• Green’s conjecture states that βi ,i+2(C ) = 0 for
i < Cliff(C ), the Clifford index of C . This governs for how
many steps the equations of C have only linear syzygies.

• For “most” curves, Cliff(C ) = gon(C )− 2 where gon(C ) is
the minimum degree of a non-constant map C → P1.
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What’s known

• Voisin (2002, 2005): There is a nonempty Zariski dense set of
curves in the moduli space of curves for which Green’s
conjecture holds. Geometric proof involving K3 surfaces.
Note: Cliff(C ) ≤ (g − 1)/2 for all C
Refinement: In fact, this set contains curves of each gonality.

• Aprodu–Farkas (2011): Green’s conjecture holds for any curve
that lies on a K3 surface.

• Many other variations...

• Aprodu–Farkas–Papadima–Raicu–Weyman (2019): Reproved
Voisin’s result using representation theory ideas (next slide).
Method of proof is simpler and extends to positive
characteristic p ≥ (g + 2)/2

• Schreyer (1986): Green’s conjecture fails in low characteristic
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Rational cuspidal curves

• Betti numbers are upper semicontinuous, i.e., the Betti
numbers of a flat degeneration can only go up. Hence, to
prove (generic) vanishing, it suffices to prove it for a single
example, and we can consider singular (smoothable) curves.

• A rational curve with g cusps has genus g and can be realized
as a hyperplane section of the tangential surface Tg of the
g -uple rational normal curve (= the union of its tangent lines).

• There is a short exact sequence of graded modules

0→ k[Tg ]→ k̃[Tg ]→ ωk[P1,O(g)](−1)→ 0,

consisting of the homog. coordinate ring of Tg , its
normalization, and the canonical module of the homog.
coordinate ring of the g -uple RNC.

• The latter two can be understood, so it amounts to
understanding a long exact sequence on Tor.
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0→ k[Tg ]→ k̃[Tg ]→ ωk[P1,O(g)](−1)→ 0

Recall that rational normal curve is cut out by maximal minors of[
x0 x1 · · · xg−1
x1 x2 · · · xg

]
thought of as multiplication map Symg−1 k2 → k2(g).
The last module is dual of resulting Eagon–Northcott complex.

TorAi (ωk[P1,O(g)], k)i =
i∧

(Symg−1 k2)⊗ Symg−2−i (k2).

for i = 0, . . . , g − 2
(dim Torg−1 = 1 but unimportant for discussion)
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0→ k[Tg ]→ k̃[Tg ]→ ωk[P1,O(g)](−1)→ 0

Tg has vector bundle desingularization:
it is projection of total space of J ∗ in Symg k2 × P1 where

J = coker(Symg−2 k2(−2)→ Symg k2)

Pushing forward Koszul complex on Symg−2 k2(−2) gives

TorAi (k̃[Tg ], k)i+1 =
i+1∧

(Symg−2 k2)⊗D2i (k2)

(also Tor0 has degree 0 piece)
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• The problem reduces to showing that the following map is
surjective for i ≤ (g − 1)/2:

TorAi (k̃[Tg ], k)i+1
// TorAi (ωk[P1,O(g)], k)i

i+1∧
(Symg−2 k2)⊗D2i (k2)

? //
i∧

(Symg−1 k2)⊗ Symg−2−i (k2)

• The group SL2(k) acts on everything in sight, so the map is
equivariant. However, it is difficult to guess a formula.

• The actual way forward is technical but insight comes from
Hermite reciprocity isomorphism:

Symn(Dmk2) ∼=
m∧

(Symm+n−1 k2).
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Symn(Dmk2) ∼=
m∧

(Symm+n−1 k2).

Doesn’t yet help; but also have map such that

i∧
(Symg−1 k2)⊗ Symg−2−i (k2) =

ker

(
i+1∧

(Symg−1(k2))⊗Di+1(k2)→
i+1∧

(Symg (k2))

)
So cokernel of the last slide is the middle homology of a sequence:

i+1∧
(Symg−2 k2) ⊗ D

2i (k2) // i+1∧
(Symg−1 k2) ⊗ D

i+1(k2) // i+1∧
(Symg k2)

Symg−2−i (Di+1k2) ⊗ D
2i (k2) // Symg−i−1(Di+1k2) ⊗ D

i+1(k2) // Symg−i (Di+1k2)

Suggestion: fix i and sum over all g . The bottom row looks like
beginning of Koszul complex for Sym(Di+1k2) but not quite.
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Koszul modules

• The key to using the module structure on the sum is that the
cokernel can be recast as a Koszul module.
Warning: This “looks” like the case in previous slide, but
actual identification is subtle

• Given a subspace K ⊂
∧2 V , the Koszul module W (V ,K ) is

the middle homology of the modified Koszul complex

SymV ⊗ K → SymV ⊗ V (1)→ SymV (2)

• In previous setting, V = Di+1k2 and K = D2ik2.
• AFPRW proved the following are equivalent:

• K⊥ ⊂
∧2 V ∗ contains no nonzero rank 2 matrix

• W (V ,K ) is finite length
• W (V ,K )d = 0 for all d ≥ dimV − 3

This is enough to prove Green’s conjecture for rational
cuspidal curves, and hence for a nonempty dense subset of
curves in the moduli space of curves.
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K3 carpets

• Double structures on P1 (ribbons) give a different
degeneration of genus g curves (intuition: if a
non-hyperelliptic curve degenerates to a hyperelliptic one, this
is the degeneration of the image of the canonical map)

• They are hyperplane sections of double structures on rational
normal scrolls. More precisely, consider the projective space

Pg = P(Syma k2 ⊕ Symg−1−a k2)

with an a-uple RNC and (g − 1− a)-uple RNC. Let B be the
homog. coordinate ring of the corresponding scroll.

• There is an extension

0→ ωB → B ′ → B → 0

where B ′ is the homog. coordinate ring of a K3 carpet. It is
a double structure on the scroll.
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Differences and results

• The ribbons are smoothable to curves of gonality a+ 2. Hence
proving Green’s conjecture for each ribbon proves it for most
curves of each gonality (not just the maximal value ones).

• Can prove it holds in characteristic p ≥ a. In generic case
a = (g − 1)/2, this beats (g + 2)/2 from cuspidal curves and
resolves a conjecture of Eisenbud–Schreyer.

• Coordinate ring A of P(Syma k2 ⊕ Symg−1−a k2) is bigraded.

• The syzygies of ωB and B are understood, so we again need
to consider a long exact sequence.
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The problem reduces to showing that the following map is
surjective for i < a:

TorAi+1(B, k)i+2
// TorAi (ωB , k)i+2

Di−1k2 ⊗
∧i+1(Syma−1 k2 ⊕ Symg−2−a k2)

? //
Symg−3−i k2 ⊗

i∧
(Syma−1 k2 ⊕ Symg−2−a k2)

We can decompose the last map into bigraded components u, v ,
fix them, and sum over all a, g .
Again, both terms are f.g. modules over a symmetric algebra and
the cokernel is a Koszul module.
It is not finite length, but we need to consider something different.
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Bigraded Koszul modules

• Given vector spaces V1,V2 and K ⊂ V1 ⊗ V2 ⊂
∧2(V1 ⊕ V2),

W (V ,K ) is the middle homology of

Sym(V1⊕V2)⊗K → Sym(V1 ⊕ V2)⊗ V1(0, 1)
Sym(V1 ⊕ V2)⊗ V2(1, 0)

→ Sym(V1⊕V2)(1, 1)

• In previous setting, V1 = Duk2, V2 = Dvk2,
K = Du+v−2k2 + Du+vk2.
• Raicu–Sam:

• K⊥ ⊂ V ∗1 ⊗ V ∗2 contains no nonzero rank ≤ 2 matrix
• W (V ,K )d,e = 0 for d , e � 0
• W (V ,K )d,e = 0 for d ≥ dimV2 − 2 and e ≥ dimV1 − 2.

As before, this proves Green’s conjecture for ribbons.
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Further directions

• Tangential surface is locus of binary forms `g−10 `1. Can do

higher tangentials {`g−d0 `1 · · · `d} and get similar structure on
sum over g , but Koszul complex replaced by

Dd(i+1)+i−1k2 ⊗ S(−d − 1)→ Dd(i+1)k2 ⊗ S(−d)→ S

where S = Sym(Di+1k2).
How about other factorization patterns?

• Red sequence above has linear syzygies (ignoring torsion
homology). Anything else in common with Koszul complex?
Might suggest other interesting examples.

• Symmetric case? Could take V1 = V2 and ask that
K ⊂ D2(V1) ⊂ V1 ⊗ V2. Didn’t find example of this.

• Other natural examples of (bigraded) Koszul modules?
K ⊂

∧2 V or K ⊂ V1 ⊗ V2. In each case, most interesting
when the orthogonal complement misses the rank 2 matrices.
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