Bi-graded Koszul modules, K3 carpets, and Green's conjecture

Steven Sam
University of California, San Diego

September 9, 2021
joint work with Claudiu Raicu
See also: arXiv:1909.09122 and arXiv:2106.04495

Green's conjecture

- Fix alg. closed field k of characteristic 0 .
- C is a (smooth) genus $g \geq 2$ curve with canonical bundle ω_{C}.
- The canonical ring $\Gamma_{C}=\bigoplus_{d \geq 0} \mathrm{H}^{0}\left(C ; \omega_{C}^{\otimes d}\right)$ is finitely generated over $A=\operatorname{Sym~}^{0}\left(\bar{C} ; \omega_{C}\right) \cong \mathrm{k}\left[x_{1}, \ldots, x_{g}\right]$.
- We're concerned with vanishing of Betti numbers

$$
\beta_{i, j}(C)=\operatorname{dim}_{\mathrm{k}} \operatorname{Tor}_{i}^{A}\left(\Gamma_{C}, \mathrm{k}\right)_{j} .
$$

- Green's conjecture states that $\beta_{i, i+2}(C)=0$ for $i<\operatorname{Cliff}(C)$, the Clifford index of C. This governs for how many steps the equations of C have only linear syzygies.
- For "most" curves, Cliff $(C)=\operatorname{gon}(C)-2$ where gon (C) is the minimum degree of a non-constant map $C \rightarrow \mathrm{P}^{1}$.

What's known

- Voisin $(2002,2005)$: There is a nonempty Zariski dense set of curves in the moduli space of curves for which Green's conjecture holds. Geometric proof involving K3 surfaces. Note: $\operatorname{Cliff}(C) \leq(g-1) / 2$ for all C Refinement: In fact, this set contains curves of each gonality.
- Aprodu-Farkas (2011): Green's conjecture holds for any curve that lies on a K3 surface.
- Many other variations...
- Aprodu-Farkas-Papadima-Raicu-Weyman (2019): Reproved Voisin's result using representation theory ideas (next slide). Method of proof is simpler and extends to positive characteristic $p \geq(g+2) / 2$
- Schreyer (1986): Green's conjecture fails in low characteristic

Rational cuspidal curves

- Betti numbers are upper semicontinuous, i.e., the Betti numbers of a flat degeneration can only go up. Hence, to prove (generic) vanishing, it suffices to prove it for a single example, and we can consider singular (smoothable) curves.
- A rational curve with g cusps has genus g and can be realized as a hyperplane section of the tangential surface T_{g} of the g-uple rational normal curve ($=$ the union of its tangent lines).
- There is a short exact sequence of graded modules

$$
0 \rightarrow \mathrm{k}\left[T_{g}\right] \rightarrow \widetilde{\mathrm{k}\left[T_{g}\right]} \rightarrow \omega_{\mathrm{k}\left[\mathrm{P}^{1}, \mathcal{O}(g)\right]}(-1) \rightarrow 0
$$

consisting of the homog. coordinate ring of T_{g}, its normalization, and the canonical module of the homog. coordinate ring of the g-uple RNC.

- The latter two can be understood, so it amounts to understanding a long exact sequence on Tor.

$$
0 \rightarrow \mathrm{k}\left[T_{g}\right] \rightarrow \widetilde{\mathrm{k}\left[T_{g}\right]} \rightarrow \omega_{\mathrm{k}\left[\mathrm{P}^{1}, \mathcal{O}(g)\right]}(-1) \rightarrow 0
$$

Recall that rational normal curve is cut out by maximal minors of

$$
\left[\begin{array}{cccc}
x_{0} & x_{1} & \cdots & x_{g-1} \\
x_{1} & x_{2} & \cdots & x_{g}
\end{array}\right]
$$

thought of as multiplication map $\operatorname{Sym}^{g-1} \mathrm{k}^{2} \rightarrow \mathrm{k}^{2}(g)$.
The last module is dual of resulting Eagon-Northcott complex.

$$
\operatorname{Tor}_{i}^{A}\left(\omega_{\mathrm{k}\left[\mathrm{P}^{1}, \mathcal{O}(g)\right]}, \mathrm{k}\right)_{i}=\bigwedge\left(\operatorname{Sym}^{g-1} \mathrm{k}^{2}\right) \otimes \operatorname{Sym}^{g-2-i}\left(\mathrm{k}^{2}\right)
$$

for $i=0, \ldots, g-2$
($\operatorname{dim} \operatorname{Tor}_{g-1}=1$ but unimportant for discussion)

$$
0 \rightarrow \mathrm{k}\left[T_{g}\right] \rightarrow \widetilde{\mathrm{k}\left[T_{g}\right]} \rightarrow \omega_{\mathrm{k}\left[\mathrm{P}^{1}, \mathcal{O}(g)\right]}(-1) \rightarrow 0
$$

T_{g} has vector bundle desingularization:
it is projection of total space of \mathcal{J}^{*} in Sym $^{g} \mathrm{k}^{2} \times \mathrm{P}^{1}$ where

$$
\mathcal{J}=\operatorname{coker}\left(\text { Sym }^{g-2} \mathrm{k}^{2}(-2) \rightarrow \operatorname{Sym}^{g} \mathrm{k}^{2}\right)
$$

Pushing forward Koszul complex on $\mathrm{Sym}^{g-2} \mathrm{k}^{2}(-2)$ gives

$$
\operatorname{Tor}_{i}^{A}\left(\widetilde{\mathrm{k}\left[T_{g}\right]}, \mathrm{k}\right)_{i+1}=\bigwedge^{i+1}\left(\operatorname{Sym}^{g-2} \mathrm{k}^{2}\right) \otimes \mathrm{D}^{2 i}\left(\mathrm{k}^{2}\right)
$$

(also Tor $_{0}$ has degree 0 piece)

- The problem reduces to showing that the following map is surjective for $i \leq(g-1) / 2$:

$$
\begin{equation*}
\operatorname{Tor}_{i}^{A}\left(\widetilde{\mathrm{k}\left[T_{g}\right]}, \mathrm{k}\right)_{i+1} \longrightarrow \operatorname{Tor}_{i}^{A}\left(\omega_{\mathrm{k}\left[\mathrm{P}^{1}, \mathcal{O}(g)\right]}, \mathrm{k}\right)_{i} \tag{lor}
\end{equation*}
$$

$$
\bigwedge^{i+1}\left(S_{y m}{ }^{g-2} k^{2}\right) \otimes D^{2 i}\left(k^{2}\right)-\stackrel{?}{-}>\bigwedge^{i}\left(\operatorname{Sym}^{g-1} k^{2}\right) \otimes \operatorname{Sym}^{g-2-i}\left(k^{2}\right)
$$

- The group $S L_{2}(\mathrm{k})$ acts on everything in sight, so the map is equivariant. However, it is difficult to guess a formula.
- The actual way forward is technical but insight comes from Hermite reciprocity isomorphism:

$$
\operatorname{Sym}^{n}\left(\mathrm{D}^{m} \mathrm{k}^{2}\right) \cong \bigwedge^{m}\left(\operatorname{Sym}^{m+n-1} \mathrm{k}^{2}\right)
$$

$$
\operatorname{Sym}^{n}\left(\mathrm{D}^{m} \mathrm{k}^{2}\right) \cong \bigwedge^{m}\left(\operatorname{Sym}^{m+n-1} \mathrm{k}^{2}\right)
$$

Doesn't yet help; but also have map such that

$$
\begin{array}{r}
\bigwedge\left(\operatorname{Sym}^{g-1} \mathrm{k}^{2}\right) \otimes \operatorname{Sym}^{g-2-i}\left(\mathrm{k}^{2}\right)= \\
\operatorname{ker}\left(\bigwedge^{i+1}\left(\operatorname{Sym}^{g-1}\left(\mathrm{k}^{2}\right)\right) \otimes \mathrm{D}^{i+1}\left(\mathrm{k}^{2}\right) \rightarrow \bigwedge^{i+1}\left(\operatorname{Sym}^{g}\left(\mathrm{k}^{2}\right)\right)\right)
\end{array}
$$

So cokernel of the last slide is the middle homology of a sequence:

Suggestion: fix i and sum over all g. The bottom row looks like beginning of Koszul complex for $\operatorname{Sym}\left(\mathrm{D}^{i+1} \mathrm{k}^{2}\right)$ but not quite.

Koszul modules

- The key to using the module structure on the sum is that the cokernel can be recast as a Koszul module. Warning: This "looks" like the case in previous slide, but actual identification is subtle
- Given a subspace $K \subset \bigwedge^{2} V$, the Koszul module $W(V, K)$ is the middle homology of the modified Koszul complex

$$
\text { Sym } V \otimes K \rightarrow \operatorname{Sym} V \otimes V(1) \rightarrow \operatorname{Sym} V(2)
$$

- In previous setting, $V=\mathrm{D}^{i+1} \mathrm{k}^{2}$ and $K=\mathrm{D}^{2 i} \mathrm{k}^{2}$.
- AFPRW proved the following are equivalent:
- $K^{\perp} \subset \bigwedge^{2} V^{*}$ contains no nonzero rank 2 matrix
- $W(V, K)$ is finite length
- $W(V, K)_{d}=0$ for all $d \geq \operatorname{dim} V-3$

This is enough to prove Green's conjecture for rational cuspidal curves, and hence for a nonempty dense subset of curves in the moduli space of curves.

K3 carpets

- Double structures on P^{1} (ribbons) give a different degeneration of genus g curves (intuition: if a non-hyperelliptic curve degenerates to a hyperelliptic one, this is the degeneration of the image of the canonical map)
- They are hyperplane sections of double structures on rational normal scrolls. More precisely, consider the projective space

$$
\mathrm{P}^{g}=\mathrm{P}\left(\mathrm{Sym}^{a} \mathrm{k}^{2} \oplus \mathrm{Sym}^{g-1-a} \mathrm{k}^{2}\right)
$$

with an a-uple RNC and ($g-1-a$)-uple RNC. Let B be the homog. coordinate ring of the corresponding scroll.

- There is an extension

$$
0 \rightarrow \omega_{B} \rightarrow B^{\prime} \rightarrow B \rightarrow 0
$$

where B^{\prime} is the homog. coordinate ring of a $\mathbf{K} 3$ carpet. It is a double structure on the scroll.

Differences and results

- The ribbons are smoothable to curves of gonality $a+2$. Hence proving Green's conjecture for each ribbon proves it for most curves of each gonality (not just the maximal value ones).
- Can prove it holds in characteristic $p \geq a$. In generic case $a=(g-1) / 2$, this beats $(g+2) / 2$ from cuspidal curves and resolves a conjecture of Eisenbud-Schreyer.
- Coordinate ring A of $\mathrm{P}\left(\mathrm{Sym}^{a} \mathrm{k}^{2} \oplus \operatorname{Sym}^{g-1-a} \mathrm{k}^{2}\right)$ is bigraded.
- The syzygies of ω_{B} and B are understood, so we again need to consider a long exact sequence.

The problem reduces to showing that the following map is surjective for $i<a$:

We can decompose the last map into bigraded components u, v, fix them, and sum over all a, g.
Again, both terms are f.g. modules over a symmetric algebra and the cokernel is a Koszul module.
It is not finite length, but we need to consider something different.

Bigraded Koszul modules

- Given vector spaces V_{1}, V_{2} and $K \subset V_{1} \otimes V_{2} \subset \bigwedge^{2}\left(V_{1} \oplus V_{2}\right)$, $W(V, K)$ is the middle homology of
$\operatorname{Sym}\left(V_{1} \oplus V_{2}\right) \otimes K \rightarrow \begin{aligned} & \operatorname{Sym}\left(V_{1} \oplus V_{2}\right) \otimes V_{1}(0,1) \\ & \operatorname{Sym}\left(V_{1} \oplus V_{2}\right) \otimes V_{2}(1,0)\end{aligned} \rightarrow \operatorname{Sym}\left(V_{1} \oplus V_{2}\right)(1,1)$
- In previous setting, $V_{1}=\mathrm{D}^{u} \mathrm{k}^{2}, V_{2}=\mathrm{D}^{v} \mathrm{k}^{2}$,
$K=\mathrm{D}^{u+v-2} \mathrm{k}^{2}+\mathrm{D}^{u+v} \mathrm{k}^{2}$.
- Raicu-Sam:
- $K^{\perp} \subset V_{1}^{*} \otimes V_{2}^{*}$ contains no nonzero rank ≤ 2 matrix
- $W(V, K)_{d, e}=0$ for $d, e \gg 0$
- $W(V, K)_{d, e}=0$ for $d \geq \operatorname{dim} V_{2}-2$ and $e \geq \operatorname{dim} V_{1}-2$.

As before, this proves Green's conjecture for ribbons.

Further directions

- Tangential surface is locus of binary forms $\ell_{0}^{g-1} \ell_{1}$. Can do higher tangentials $\left\{\ell_{0}^{g-d} \ell_{1} \cdots \ell_{d}\right\}$ and get similar structure on sum over g, but Koszul complex replaced by

$$
\mathrm{D}^{d(i+1)+i-1} \mathrm{k}^{2} \otimes S(-d-1) \rightarrow \mathrm{D}^{d(i+1)} \mathrm{k}^{2} \otimes S(-d) \rightarrow S
$$

where $S=\operatorname{Sym}\left(\mathrm{D}^{i+1} \mathrm{k}^{2}\right)$.
How about other factorization patterns?

- Red sequence above has linear syzygies (ignoring torsion homology). Anything else in common with Koszul complex? Might suggest other interesting examples.
- Symmetric case? Could take $V_{1}=V_{2}$ and ask that $K \subset \mathrm{D}^{2}\left(V_{1}\right) \subset V_{1} \otimes V_{2}$. Didn't find example of this.
- Other natural examples of (bigraded) Koszul modules? $K \subset \bigwedge^{2} V$ or $K \subset V_{1} \otimes V_{2}$. In each case, most interesting when the orthogonal complement misses the rank 2 matrices.

