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Green's conjecture

Fix alg. closed field k of characteristic 0.

C is a (smooth) genus g > 2 curve with canonical bundle w¢.
The canonical ring I'c = P 450 HO(C;w?d) is finitely
generated over A = SymH%(C;wc) X k[xi, ..., Xg].

We're concerned with vanishing of Betti numbers
B,’J(C) = dimk Tor,A(FC, k)j.

Green'’s conjecture states that ;;12(C) = 0 for

i < Cliff(C), the Clifford index of C. This governs for how
many steps the equations of C have only linear syzygies.
For "most” curves, Cliff(C) = gon(C) — 2 where gon(C) is
the minimum degree of a non-constant map C — P.
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What's known

Voisin (2002, 2005): There is a nonempty Zariski dense set of
curves in the moduli space of curves for which Green's
conjecture holds. Geometric proof involving K3 surfaces.
Note: Cliff(C) < (g —1)/2 for all C

Refinement: In fact, this set contains curves of each gonality.
Aprodu—Farkas (2011): Green's conjecture holds for any curve
that lies on a K3 surface.

Many other variations...

Aprodu—Farkas—Papadima—Raicu—Weyman (2019): Reproved
Voisin's result using representation theory ideas (next slide).
Method of proof is simpler and extends to positive
characteristic p > (g +2)/2

Schreyer (1986): Green's conjecture fails in low characteristic

3/14



Rational cuspidal curves

Betti numbers are upper semicontinuous, i.e., the Betti
numbers of a flat degeneration can only go up. Hence, to
prove (generic) vanishing, it suffices to prove it for a single
example, and we can consider singular (smoothable) curves.

A rational curve with g cusps has genus g and can be realized
as a hyperplane section of the tangential surface T, of the
g-uple rational normal curve (= the union of its tangent lines).

There is a short exact sequence of graded modules
0— k[Tg] — k[Tg] — wk[plﬁg(g)](—l) — 0,

consisting of the homog. coordinate ring of T, its
normalization, and the canonical module of the homog.
coordinate ring of the g-uple RNC.

The latter two can be understood, so it amounts to
understanding a long exact sequence on Tor.
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0— k[Tg] — k[Tg] — wk[pl,o(g)](—].) —0

Recall that rational normal curve is cut out by maximal minors of

Xo X1 - Xg—l
Xl X2 .. Xg

thought of as multiplication map Sym& =1 k? — k2(g).
The last module is dual of resulting Eagon—Northcott complex.

i

Tor (wigpr,o(e)), K)i = \(Sym& 1 k%) @ Sym& =27 (1).

fori=0,...,8—2
(dim Torg—1 = 1 but unimportant for discussion)
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0— k[Tg] — k[Tg] — wk[pl,o(g)](—].) —0

Tg has vector bundle desingularization:

it is projection of total space of J* in Sym& k? x P! where
J = coker(Sym& 2 k?(—2) — Symé k?)

Pushing forward Koszul complex on Sym&~2k?(—2) gives

i+1
Torf (K[ Tel, k)1 = [\ (Sym# ™2 K*) @ D*/(K?)

(also Torg has degree 0 piece)
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® The problem reduces to showing that the following map is
surjective for i < (g —1)/2:

Tor (k[ Tg], k)iz1 ————— Tor} (wyp1, o)) k)i

i+1
/+\(symg2 k?) © D2 (k) - ;>/\ (SymE ™1 k?) @ SymE 27/ (k?)

® The group SLa(k) acts on everything in sight, so the map is
equivariant. However, it is difficult to guess a formula.

® The actual way forward is technical but insight comes from
Hermite reciprocity isomorphism:

m

Sym"(Dmk2) ~ /\(Symernfl k2)
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m

Sym™(D™Mk?) = /\(Symm"r"_1 k?).

Doesn't yet help; but also have map such that
i

A\ (SymE 1K) @ Syms2(1%) =

i+1 i+1
ker (/\(symg—l(k2)) ® D (K?) — /\(Symg(k2))>

So cokernel of the last slide is the middle homology of a sequence:

i+1 . i+1 ) i+1
AGymE 212 @ D (IK¥) ————>= A (Symf 1 K%) @ DT (KP) ————> A\ (Symf k%)

SymE271(D2) @ DY (k) > symE—I~1(DIT12) @ DIFL(K?) > Symé i (DIH1K2)

Suggestion: fix i and sum over all g. The bottom row looks like

beginning of Koszul complex for Sym(D+1k?) but not quite.
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Koszul modules

The key to using the module structure on the sum is that the
cokernel can be recast as a Koszul module.

Warning: This “looks” like the case in previous slide, but
actual identification is subtle

Given a subspace K € A? V, the Koszul module W (V, K) is
the middle homology of the modified Koszul complex

SymV ® K — SymV ® V(1) — Sym V(2)

® In previous setting, V = D'*1k? and K = D?k?,

o AFPRW proved the following are equivalent:

* Ktc /\2 V* contains no nonzero rank 2 matrix

* W(V,K) is finite length

* W(V,K)g=0forall d>dimV —3
This is enough to prove Green's conjecture for rational
cuspidal curves, and hence for a nonempty dense subset of

curves in the moduli space of curves.
9/14



K3 carpets

* Double structures on P! (ribbons) give a different
degeneration of genus g curves (intuition: if a
non-hyperelliptic curve degenerates to a hyperelliptic one, this
is the degeneration of the image of the canonical map)

® They are hyperplane sections of double structures on rational
normal scrolls. More precisely, consider the projective space

P& = P(Sym?k? @ Sym&~177k?)

with an a-uple RNC and (g — 1 — a)-uple RNC. Let B be the
homog. coordinate ring of the corresponding scroll.

® There is an extension
0 —swg—B —-B—=0
where B’ is the homog. coordinate ring of a K3 carpet. It is

a double structure on the scroll.
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Differences and results

The ribbons are smoothable to curves of gonality a+ 2. Hence
proving Green's conjecture for each ribbon proves it for most
curves of each gonality (not just the maximal value ones).

Can prove it holds in characteristic p > a. In generic case
a= (g —1)/2, this beats (g + 2)/2 from cuspidal curves and
resolves a conjecture of Eisenbud—Schreyer.

Coordinate ring A of P(Sym?k? @ Sym&~172k?) is bigraded.
The syzygies of wg and B are understood, so we again need
to consider a long exact sequence.
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The problem reduces to showing that the following map is
surjective for i < a:

A
Toril (B, k)it2 Torf\(wB, K)jt2

— — —_2— ? . !
DITHE @ ATHSym THR @ SymETETIE) — — > gune=3-ii2 g A (sym™ 1K @ SymS 2 71P)

We can decompose the last map into bigraded components u, v,
fix them, and sum over all a, g.

Again, both terms are f.g. modules over a symmetric algebra and
the cokernel is a Koszul module.

It is not finite length, but we need to consider something different.
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Bigraded Koszul modules

e Given vector spaces Vi, Vo and K C Vi ® Vb, C /\2(V1 @ Vo),
W(V, K) is the middle homology of

Vi@ Vo) ® V4(0,1
Sym(ViaVa)ak — YmVie V)@ 1((1”(); = Sym(VieVa)(1,1)

Sym(V1 &) Vg) (29 V2( ,

® |n previous setting, V4 = DYk2, V, = DVK?,
K = Du+v—2k2 + Du+vk2_
® Raicu-Sam:

* KL C Vf ® V5 contains no nonzero rank < 2 matrix
o W(V,K)ge=0ford,e>0
* W(V,K)ge=0ford>dimV,—2and e>dimV; —2.

As before, this proves Green's conjecture for ribbons.
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Further directions

Tangential surface is locus of binary forms é‘g_lél. Can do

higher tangentials {Eg_dfl -+ L4} and get similar structure on
sum over g, but Koszul complex replaced by

DAFDH12 & §(—d — 1) —» D/FI2 @ S(—d) — S

where S = Sym(D/*1k2).

How about other factorization patterns?

Red sequence above has linear syzygies (ignoring torsion
homology). Anything else in common with Koszul complex?
Might suggest other interesting examples.

Symmetric case? Could take V; = V5 and ask that

K c D?(V4) C V4 ® V,. Didn't find example of this.

Other natural examples of (bigraded) Koszul modules?

K C /\2 V or K C Vi ® V. In each case, most interesting
when the orthogonal complement misses the rank 2 matrices.
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