Polynomials of bounded degree

Steven Sam
University of California, San Diego

January 21, 2021

Warm-up

- Ways to define the rank of a polynomial?
- How about system of polynomials?
- Special properties of systems of polynomials with high rank (relative to their degrees)?

Polynomial systems

$\mathbf{C}\left[x_{1}, \ldots, x_{r}\right]$ is the ring of complex polynomials in r variables,
f_{1}, \ldots, f_{n} are homogeneous polynomials, assumed linearly independent.
$I=\left(f_{1}, \ldots, f_{r}\right)=\left\{\sum_{i} g_{i} f_{i} \mid g_{i}\right.$ polynomial $\}$
is ideal generated by f 's,
$Z=Z(I)=\left\{\left(a_{1}, \ldots, a_{r}\right) \in \mathbf{C}^{r} \mid f_{1}(a)=\cdots=f_{n}(a)=0\right\}$ is the zero set of I or f 's. Use Euclidean or Zariski topology.
Z has a nonempty open subset which is a disjoint union of complex manifolds, define dimension as the max dimension.

Basic invariants

$f_{1}, \ldots, f_{n} \in \mathbf{C}\left[x_{1}, \ldots, x_{r}\right]$
Codimension is codim $=r-\operatorname{dim}$. Always have codim $\leq n$. If codim $=n, f_{1}, \ldots, f_{n}$ is called regular sequence.
Regular sequence implies algebraically independent, but is stronger.
If $n=1$, always true.
If $n=2$, true if and only if f_{1}, f_{2} have no common factors.

For a random linear space L with $\operatorname{dim} L=\operatorname{codim} Z, L \cap Z$ is a finite set of points, degree $\operatorname{deg} Z$ is the number.

Bézout bound: $\operatorname{deg} Z \leq \prod_{i=1}^{n} \operatorname{deg} f_{i}$.
Of note: codim and deg are bounded by n and $\operatorname{deg} f_{i}$, but independent of r.

More invariants

$f_{1}, \ldots, f_{n} \in \mathbf{C}\left[x_{1}, \ldots, x_{r}\right]$
Projective dimension pdim is length of minimal free resolution of $\mathbf{C}\left[x_{1}, \ldots, x_{r}\right] / I$. Higher pdim $=$ more complicated.
Lower bound: pdim \geq codim Hilbert bound: pdim $\leq r=$ \#variables.
(Castelnuovo-Mumford) regularity reg is the "height" of minimal free resolution.
Related to when Hilbert function agrees with Hilbert polynomial Bound (Galligo, Giusti, Caviglia-Sbarra): reg $\leq\left(2 \max \operatorname{deg} f_{i}\right)^{2^{r-2}}$

Stillman's question

Stillman (2000): Is there an upper bound for pdim independent of $r=$ \#variables?
If answer is yes, certain Gröbner basis calculations can in principle be replaced by linear algebra calculations

For 1 polynomial: pdim $=1$
For 2 polynomials: pdim $=2$
For 3 polynomials: Bruns showed that pdim is unbounded, however his examples use polynomials of higher and higher degree

Refine question: bound should depend on number of polynomials n and their max degree D

Caviglia showed that positive answer also implies bound on regularity independent of r.

Subalgebras generated by regular sequences

Naive improvement to Hilbert bound: if f_{1}, \ldots, f_{n} only use s of the variables, then pdim $\leq s$ (others don't matter).
Can try to improve by allowing linear changes of coordinates
Not practical though: $x_{1}^{2}+x_{2}^{2}+\cdots+x_{r}^{2}$ cannot be defined using less than r variables (rank of quadric).

Less naive: If there is regular sequence g_{1}, \ldots, g_{s} so that f 's are in subalgebra generated by g 's; then pdim $\leq s$ by flatness argument.

Ananyan-Hochster theorem: can always find g_{1}, \ldots, g_{s} where s is bounded by $n=\#$ polynomials and $D=\max \operatorname{deg} f_{i}$. They call subalgebra generated by g 's a small subalgebra.

First approximation

First approximation of idea for existence of small subalgebras:

- If f_{1}, \ldots, f_{n} is a regular sequence, take $g_{i}=f_{i}$, bound is $s=n$.
- Otherwise, decompose one of the polynomials into smaller degree polynomials,

$$
f_{1}=g_{1} h_{1}+\cdots+g_{e} h_{e}
$$

and consider now $g_{1}, \ldots, g_{e}, h_{1}, \ldots, h_{e}, f_{2}, \ldots, f_{n}$. For a suitable ordering, this is a simpler system of polynomials, and we can continue if we can bound e.

Problem: $\sum x_{i}^{2}$ suggests we can't control e. Obvious improvement is not to decompose f_{1}, but to pick f_{i} carefully to minimize e. Even better, consider all linear combinations of the f_{i} to minimize e.

Decomposing polynomials and strength

Formalize previous ideas:

- The strength ν of a homog. polynomial f is the minimal e such that there exists homog. decomposition

$$
f=g_{1} h_{1}+\cdots+g_{e} h_{e}
$$

with $\operatorname{deg} g_{i}, \operatorname{deg} h_{i}<\operatorname{deg} f$.
This always exists if $\operatorname{deg} f>1$ since can use variables, so strength $\leq \#$ variables. Linear forms have ∞ strength.

- The strength ν of f_{1}, \ldots, f_{n} is the minimal strength of a nonzero homogeneous linear combination.
Ananyan-Hochster theorem: There exists $N=N(n, D)$ such that either f_{1}, \ldots, f_{n} is a regular sequence, or strength is $<N$.

Other notions of rank

Waring rank of f is minimal e such that

$$
f=\ell_{1}^{d}+\cdots+\ell_{e}^{d}
$$

where ℓ_{i} are linear; natural from perspective of secant varieties of Veronese embeddings. For $d=2$, this is the usual rank of a quadric.

Compare: In non-commutative setting, $v_{1} \otimes \cdots \otimes v_{d} \in V_{1} \otimes \cdots V_{d}$ are rank 1 tensors (rank r means sum of r rank 1)
Slice rank 1 tensors are of the form $v_{i} \otimes \omega$ where $v_{i} \in V$ and $\omega \in \bigotimes_{j \neq i} V_{j}$ (introduced in study of "cap-set problem")

A-H theorem implies small subalgebras

- Order polynomials by their degree list $\operatorname{deg} f_{1} \geq \cdots \geq \operatorname{deg} f_{n}$ lexicographically. When decomposing a polynomial, the degree list gets smaller. The outlined process terminates by well-ordering property of lexicographic order.
- At all stages, if we don't have a regular sequence, the list of possibilities for new degree sequences is finite by A-H theorem.
- So the whole process is a tree where each node has finitely many children and each path is finite. So the whole tree is finite, which gives bound for s and hence existence of small subalgebras.

Other implications

- Existence of small subalgebras gives unifying perspective on finding bounds for invariants depending only on \#polynomials and maxdeg.
- Having large enough strength implies more than just regular sequence. Also implies:
- $Z(f)$ is connected and irreducible,
- f_{1}, \ldots, f_{n} generates a prime ideal,
- $Z(f)$ is smooth away from 0 .
- More generally, singular locus of $Z(f)$ has codimension $\geq c$ for some fixed c.
- $Z(f)$ is unirational (Harris-Mazur-Pandharipande)

Idealized forms

Rephrasing: if $\nu\left(f_{1}, \ldots, f_{n}\right) \gg n \max \operatorname{deg}\left(f_{i}\right)$, then f_{1}, \ldots, f_{n} is regular sequence.
Convenient to replace \gg with some type of limit. With Erman and Snowden, we consider two types of limits to give new proofs of A-H.

Limit 1 Let $R(d)$ be the ultrapower of complex polynomials of degree d in a set of variables x_{1}, x_{2}, \ldots. Then $R=\bigoplus_{d \geq 0} R(d)$ is a graded algebra.

Limit 2 Let $S(d)$ be the set of formal linear combinations of all monomials of degree d in x_{1}, x_{2}, \ldots Again $S=\bigoplus_{d \geq 0} S(d)$ is a graded algebra.

Theorems about limit algebras

For any graded algebra we can define strength. Now there can be non-decomposable elements of degree >1, they have ∞ strength.

Erman-Sam-Snowden: Both R and S are isomorphic to polynomial rings. We have $\nu\left(f_{1}, \ldots, f_{n}\right)=\infty$ if and only if $\left\{f_{1}, \ldots, f_{n}\right\}$ can be extended to a list of algebraically independent generators.

Proof of $\mathrm{A}-\mathrm{H}$: If A-H were false, then we can find collections of non-regular sequences $f_{1}^{(i)}, \ldots, f_{n}^{(i)}$ of degree $\leq D$ such that $\lim _{i} \nu \rightarrow \infty$.
Take ultralimit $f_{j}=\operatorname{ulim}_{i} f_{j}^{(i)}$ to get elements of R.
Theorem says that f_{1}, \ldots, f_{n} are a regular sequence. A technical argument implies that this must be true for infinitely many of the original sequences.

Ultraproducts

Start with non-principal ultrafilter, a collection \mathcal{F} of infinite subsets of \mathbf{N} such that

- Closed under intersection and taking supersets
- For all $S \subset \mathbf{N}$, either $S \in \mathcal{F}$ or $\mathbf{N} \backslash S \in \mathcal{F}$.

For sequences $\left(x_{i}\right)$ and $\left(y_{i}\right), x \sim y$ if $\left\{i \mid x_{i}=y_{i}\right\} \in \mathcal{F}$.
Ultraproduct of X_{0}, X_{1}, \ldots is $\mathbf{X}=\prod_{i} X_{i} / \sim$. Inherits structure, for example X_{i} are rings implies \mathbf{X} is a ring More subtle: X_{i} are fields implies \mathbf{X} is a field

Very flexible: any sequence has a well-defined limit (so proposed counterexamples don't need to be checked for "convergence")

Derivational criterion for polynomiality

The proof of our theorem uses:
Theorem (ESS): Let $A=\bigoplus_{d \geq 0} A_{d}$ be a commutative algebra with A_{0} a field of characteristic 0 . Suppose for all $f \in A_{d}$ with $d>0$, there exists a negative degree derivation ∂ such that $\partial(f) \neq 0$. Then any minimal set of generators of A is algebraically independent.

Verification in our examples is easy: let ∂_{i} be partial derivative with respect to x_{i}; then for all f, there is some i such that $\partial_{i}(f) \neq 0$.

A topological approach

A topological space X is noetherian if every descending chain of closed subsets $Z_{1} \supseteq Z_{2} \supseteq \cdots$ satisfies $Z_{i}=Z_{i+1}$ for $i \gg 0$.

Holds for algebraic varieties (e.g., f.dim. vector spaces) with Zariski topology
A general method for proving boundedness of f :
$Z_{i}=\{x \mid f(x) \geq i\}$ (if closed)
Big if: a lot of functions require further refinement of X (flattening stratification)

Naive strategy: for fixed d_{1}, \ldots, d_{n}, tuple of homogeneous polynomials with those degrees in variables x_{1}, x_{2}, \ldots has Zariski topology. Take $f=$ pdim. Try to find flattening stratification. Not noetherian though.

GL-noetherianity

Space of polynomials not noetherian, but has GL group action (change of basis). We only care about subsets invariant under GL. Refine noetherian to GL-noetherian: only consider chains of GL-invariant closed subsets.

Draisma proved that space of tuples of polynomials is GL-noetherian. Can use this idea to give different proof of Stillman conjecture.
In fact, Draisma shows any polynomial functor is GL-noetherian.

