Polynomials of bounded degree

Steven Sam

University of California, San Diego

January 21, 2021

- Ways to define the rank of a polynomial?
- How about system of polynomials?
- Special properties of systems of polynomials with high rank (relative to their degrees)?

Polynomial systems

 $\mathbf{C}[x_1,\ldots,x_r]$ is the ring of complex polynomials in r variables,

 f_1, \ldots, f_n are *homogeneous* polynomials, assumed linearly independent.

 $I = (f_1, \dots, f_r) = \{\sum_i g_i f_i \mid g_i \text{ polynomial}\}\$ is ideal generated by f's,

 $Z = Z(I) = \{(a_1, \dots, a_r) \in \mathbf{C}^r \mid f_1(a) = \dots = f_n(a) = 0\}$ is the **zero set** of *I* or *f*'s. Use Euclidean or Zariski topology.

Z has a nonempty open subset which is a disjoint union of complex manifolds, define **dimension** as the max dimension.

$f_1,\ldots,f_n\in \mathbf{C}[x_1,\ldots,x_r]$

Codimension is $\operatorname{codim} = r - \operatorname{dim}$. Always have $\operatorname{codim} \le n$. If $\operatorname{codim} = n$, f_1, \ldots, f_n is called **regular sequence**. Regular sequence implies algebraically independent, but is stronger.

If n = 1, always true. If n = 2, true if and only if f_1, f_2 have no common factors.

For a random linear space L with dim $L = \operatorname{codim} Z$, $L \cap Z$ is a finite set of points, **degree** deg Z is the number.

Bézout bound: deg $Z \leq \prod_{i=1}^{n} \deg f_i$.

Of note: codim and deg are bounded by n and deg f_i , but independent of r.

More invariants

$f_1,\ldots,f_n\in {f C}[x_1,\ldots,x_r]$

Projective dimension pdim is length of minimal free resolution of $C[x_1, ..., x_r]/I$. Higher pdim = more complicated. Lower bound: pdim \geq codim Hilbert bound: pdim $\leq r = \#$ variables.

(Castelnuovo–Mumford) regularity reg is the "height" of minimal free resolution.

Related to when Hilbert function agrees with Hilbert polynomial Bound (Galligo, Giusti, Caviglia–Sbarra): reg $\leq (2 \max \deg f_i)^{2^{r-2}}$

Stillman's question

Stillman (2000): Is there an upper bound for pdim independent of r = #variables?

If answer is yes, certain Gröbner basis calculations can in principle be replaced by linear algebra calculations

For 1 polynomial: pdim = 1 For 2 polynomials: pdim = 2 For 3 polynomials: Bruns showed that pdim is unbounded, however his examples use polynomials of higher and higher degree

Refine question: bound should depend on number of polynomials n and their max degree D

Caviglia showed that positive answer also implies bound on regularity independent of r.

Subalgebras generated by regular sequences

Naive improvement to Hilbert bound: if f_1, \ldots, f_n only use s of the variables, then pdim $\leq s$ (others don't matter). Can try to improve by allowing linear changes of coordinates

Not practical though: $x_1^2 + x_2^2 + \cdots + x_r^2$ cannot be defined using less than *r* variables (rank of quadric).

Less naive: If there is regular sequence g_1, \ldots, g_s so that f's are in subalgebra generated by g's; then pdim $\leq s$ by flatness argument.

Ananyan–Hochster theorem: can always find g_1, \ldots, g_s where s is bounded by n = # polynomials and $D = \max \deg f_i$. They call subalgebra generated by g's a small subalgebra.

First approximation

First approximation of idea for existence of small subalgebras:

- If f_1, \ldots, f_n is a regular sequence, take $g_i = f_i$, bound is s = n.
- Otherwise, decompose one of the polynomials into smaller degree polynomials,

$$f_1 = g_1 h_1 + \dots + g_e h_e$$

and consider now $g_1, \ldots, g_e, h_1, \ldots, h_e, f_2, \ldots, f_n$. For a suitable ordering, this is a simpler system of polynomials, and we can continue if we can bound e.

Problem: $\sum x_i^2$ suggests we can't control *e*. Obvious improvement is not to decompose f_1 , but to pick f_i carefully to minimize *e*. Even better, consider all linear combinations of the f_i to minimize *e*.

Formalize previous ideas:

• The strength ν of a homog. polynomial f is the minimal e such that there exists homog. decomposition

$$f = g_1 h_1 + \dots + g_e h_e$$

with deg g_i , deg $h_i < \deg f$. This always exists if deg f > 1 since can use variables, so strength $\leq \#$ variables. Linear forms have ∞ strength.

The strength ν of f₁,..., f_n is the minimal strength of a nonzero homogeneous linear combination.

Ananyan–Hochster theorem: There exists N = N(n, D) such that either f_1, \ldots, f_n is a regular sequence, or strength is < N.

Other notions of rank

Waring rank of f is minimal e such that

$$f = \ell_1^d + \dots + \ell_e^d$$

where ℓ_i are linear; natural from perspective of secant varieties of Veronese embeddings. For d = 2, this is the usual rank of a quadric.

Compare: In non-commutative setting, $v_1 \otimes \cdots \otimes v_d \in V_1 \otimes \cdots V_d$ are rank 1 tensors (rank *r* means sum of *r* rank 1) Slice rank 1 tensors are of the form $v_i \otimes \omega$ where $v_i \in V$ and $\omega \in \bigotimes_{j \neq i} V_j$ (introduced in study of "cap-set problem")

A-H theorem implies small subalgebras

- Order polynomials by their degree list deg $f_1 \ge \cdots \ge \deg f_n$ lexicographically. When decomposing a polynomial, the degree list gets smaller. The outlined process terminates by well-ordering property of lexicographic order.
- At all stages, if we don't have a regular sequence, the list of possibilities for new degree sequences is finite by A-H theorem.
- So the whole process is a tree where each node has finitely many children and each path is finite. So the whole tree is finite, which gives bound for *s* and hence existence of small subalgebras.

Other implications

- Existence of small subalgebras gives unifying perspective on finding bounds for invariants depending only on #polynomials and max deg.
- Having large enough strength implies more than just regular sequence. Also implies:
 - Z(f) is connected and irreducible,
 - f_1, \ldots, f_n generates a prime ideal,
 - Z(f) is smooth away from 0.
 - More generally, singular locus of Z(f) has codimension ≥ c for some fixed c.
 - *Z*(*f*) is unirational (Harris–Mazur–Pandharipande)

Idealized forms

Rephrasing: if $\nu(f_1, \ldots, f_n) \gg n \max \deg(f_i)$, then f_1, \ldots, f_n is regular sequence.

Convenient to replace \gg with some type of limit.

With Erman and Snowden, we consider two types of limits to give new proofs of A-H.

Limit 1 Let R(d) be the ultrapower of complex polynomials of degree d in a set of variables x_1, x_2, \ldots . Then $R = \bigoplus_{d \ge 0} R(d)$ is a graded algebra.

Limit 2 Let S(d) be the set of formal linear combinations of all monomials of degree d in x_1, x_2, \ldots . Again $S = \bigoplus_{d \ge 0} S(d)$ is a graded algebra.

Theorems about limit algebras

For any graded algebra we can define strength. Now there can be non-decomposable elements of degree > 1, they have ∞ strength.

Erman–Sam–Snowden: Both *R* and *S* are isomorphic to polynomial rings. We have $\nu(f_1, \ldots, f_n) = \infty$ if and only if $\{f_1, \ldots, f_n\}$ can be extended to a list of algebraically independent generators.

Proof of A-H: If A-H were false, then we can find collections of non-regular sequences $f_1^{(i)}, \ldots, f_n^{(i)}$ of degree $\leq D$ such that $\lim_i \nu \to \infty$. Take ultralimit $f_j = \lim_i f_j^{(i)}$ to get elements of R. Theorem says that f_1, \ldots, f_n are a regular sequence. A technical argument implies that this must be true for infinitely many of the original sequences.

Ultraproducts

Start with non-principal ultrafilter, a collection ${\mathcal F}$ of infinite subsets of ${\bm N}$ such that

- Closed under intersection and taking supersets
- For all $S \subset \mathbf{N}$, either $S \in \mathcal{F}$ or $\mathbf{N} \setminus S \in \mathcal{F}$.

For sequences (x_i) and (y_i) , $x \sim y$ if $\{i \mid x_i = y_i\} \in \mathcal{F}$.

Ultraproduct of X_0, X_1, \ldots is $\mathbf{X} = \prod_i X_i / \sim$. Inherits structure, for example X_i are rings implies \mathbf{X} is a ring More subtle: X_i are fields implies \mathbf{X} is a field

Very flexible: any sequence has a well-defined limit (so proposed counterexamples don't need to be checked for "convergence")

The proof of our theorem uses:

Theorem (ESS): Let $A = \bigoplus_{d \ge 0} A_d$ be a commutative algebra with A_0 a field of characteristic 0. Suppose for all $f \in A_d$ with d > 0, there exists a negative degree derivation ∂ such that $\partial(f) \neq 0$. Then any minimal set of generators of A is algebraically independent.

Verification in our examples is easy: let ∂_i be partial derivative with respect to x_i ; then for all f, there is some i such that $\partial_i(f) \neq 0$.

A topological approach

A topological space X is **noetherian** if every descending chain of closed subsets $Z_1 \supseteq Z_2 \supseteq \cdots$ satisfies $Z_i = Z_{i+1}$ for $i \gg 0$.

Holds for algebraic varieties (e.g., f.dim. vector spaces) with Zariski topology A general method for proving boundedness of f: $Z_i = \{x \mid f(x) \ge i\}$ (if closed)

Big if: a lot of functions require further refinement of X (flattening stratification)

Naive strategy: for fixed d_1, \ldots, d_n , tuple of homogeneous polynomials with those degrees in variables x_1, x_2, \ldots has Zariski topology. Take f = pdim. Try to find flattening stratification. Not noetherian though.

GL-noetherianity

Space of polynomials not noetherian, but has GL group action (change of basis). We only care about subsets invariant under GL. Refine noetherian to **GL-noetherian**: only consider chains of GL-invariant closed subsets.

Draisma proved that space of tuples of polynomials is GL-noetherian. Can use this idea to give different proof of Stillman conjecture.

In fact, Draisma shows any polynomial functor is GL-noetherian.