
Polynomials of bounded degree

Steven Sam

University of California, San Diego

January 21, 2021

1 / 18



Warm-up

• Ways to define the rank of a polynomial?

• How about system of polynomials?

• Special properties of systems of polynomials with high rank
(relative to their degrees)?
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Polynomial systems

C[x1, . . . , xr ] is the ring of complex polynomials in r variables,

f1, . . . , fn are homogeneous polynomials, assumed linearly
independent.

I = (f1, . . . , fr ) = {
∑

i gi fi | gi polynomial}
is ideal generated by f ’s,

Z = Z (I ) = {(a1, . . . , ar ) ∈ Cr | f1(a) = · · · = fn(a) = 0}
is the zero set of I or f ’s. Use Euclidean or Zariski topology.

Z has a nonempty open subset which is a disjoint union of
complex manifolds, define dimension as the max dimension.
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Basic invariants

f1, . . . , fn ∈ C[x1, . . . , xr ]

Codimension is codim = r − dim. Always have codim ≤ n.
If codim = n, f1, . . . , fn is called regular sequence.
Regular sequence implies algebraically independent, but is stronger.

If n = 1, always true.
If n = 2, true if and only if f1, f2 have no common factors.

For a random linear space L with dim L = codimZ , L ∩ Z is a
finite set of points, degree degZ is the number.

Bézout bound: degZ ≤
∏n

i=1 deg fi .

Of note: codim and deg are bounded by n and deg fi , but
independent of r .
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More invariants

f1, . . . , fn ∈ C[x1, . . . , xr ]

Projective dimension pdim is length of minimal free resolution of
C[x1, . . . , xr ]/I . Higher pdim = more complicated.
Lower bound: pdim ≥ codim
Hilbert bound: pdim ≤ r = #variables.

(Castelnuovo–Mumford) regularity reg is the “height” of
minimal free resolution.
Related to when Hilbert function agrees with Hilbert polynomial
Bound (Galligo, Giusti, Caviglia–Sbarra): reg ≤ (2 max deg fi )

2r−2

5 / 18



Stillman’s question

Stillman (2000): Is there an upper bound for pdim independent
of r = #variables?
If answer is yes, certain Gröbner basis calculations can in principle
be replaced by linear algebra calculations

For 1 polynomial: pdim = 1
For 2 polynomials: pdim = 2
For 3 polynomials: Bruns showed that pdim is unbounded, however
his examples use polynomials of higher and higher degree

Refine question: bound should depend on number of polynomials n
and their max degree D

Caviglia showed that positive answer also implies bound on
regularity independent of r .
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Subalgebras generated by regular sequences

Naive improvement to Hilbert bound: if f1, . . . , fn only use s of the
variables, then pdim ≤ s (others don’t matter).
Can try to improve by allowing linear changes of coordinates

Not practical though: x21 + x22 + · · ·+ x2r cannot be defined using
less than r variables (rank of quadric).

Less naive: If there is regular sequence g1, . . . , gs so that f ’s are in
subalgebra generated by g ’s; then pdim ≤ s by flatness argument.

Ananyan–Hochster theorem: can always find g1, . . . , gs where s is
bounded by n = #polynomials and D = max deg fi .
They call subalgebra generated by g ’s a small subalgebra.
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First approximation

First approximation of idea for existence of small subalgebras:

• If f1, . . . , fn is a regular sequence, take gi = fi , bound is s = n.

• Otherwise, decompose one of the polynomials into smaller
degree polynomials,

f1 = g1h1 + · · ·+ gehe

and consider now g1, . . . , ge , h1, . . . , he , f2, . . . , fn. For a
suitable ordering, this is a simpler system of polynomials, and
we can continue if we can bound e.

Problem:
∑

x2i suggests we can’t control e. Obvious improvement
is not to decompose f1, but to pick fi carefully to minimize e. Even
better, consider all linear combinations of the fi to minimize e.
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Decomposing polynomials and strength

Formalize previous ideas:

• The strength ν of a homog. polynomial f is the minimal e
such that there exists homog. decomposition

f = g1h1 + · · ·+ gehe

with deg gi , deg hi < deg f .
This always exists if deg f > 1 since can use variables, so
strength ≤ #variables. Linear forms have ∞ strength.

• The strength ν of f1, . . . , fn is the minimal strength of a
nonzero homogeneous linear combination.

Ananyan–Hochster theorem: There exists N = N(n,D) such
that either f1, . . . , fn is a regular sequence, or strength is < N.

9 / 18



Other notions of rank

Waring rank of f is minimal e such that

f = `d1 + · · ·+ `de

where `i are linear; natural from perspective of secant varieties of
Veronese embeddings. For d = 2, this is the usual rank of a
quadric.

Compare: In non-commutative setting, v1 ⊗ · · · ⊗ vd ∈ V1 ⊗ · · ·Vd

are rank 1 tensors (rank r means sum of r rank 1)
Slice rank 1 tensors are of the form vi ⊗ ω where vi ∈ V and
ω ∈

⊗
j 6=i Vj (introduced in study of “cap-set problem”)
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A-H theorem implies small subalgebras

• Order polynomials by their degree list deg f1 ≥ · · · ≥ deg fn
lexicographically. When decomposing a polynomial, the
degree list gets smaller. The outlined process terminates by
well-ordering property of lexicographic order.

• At all stages, if we don’t have a regular sequence, the list of
possibilities for new degree sequences is finite by A-H theorem.

• So the whole process is a tree where each node has finitely
many children and each path is finite. So the whole tree is
finite, which gives bound for s and hence existence of small
subalgebras.
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Other implications

• Existence of small subalgebras gives unifying perspective on
finding bounds for invariants depending only on #polynomials
and max deg.
• Having large enough strength implies more than just regular

sequence. Also implies:
• Z (f ) is connected and irreducible,
• f1, . . . , fn generates a prime ideal,
• Z (f ) is smooth away from 0.
• More generally, singular locus of Z (f ) has codimension ≥ c for

some fixed c .
• Z (f ) is unirational (Harris–Mazur–Pandharipande)
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Idealized forms

Rephrasing: if ν(f1, . . . , fn)� nmax deg(fi ), then f1, . . . , fn is
regular sequence.
Convenient to replace � with some type of limit.
With Erman and Snowden, we consider two types of limits to give
new proofs of A-H.

Limit 1 Let R(d) be the ultrapower of complex polynomials of
degree d in a set of variables x1, x2, . . . . Then R =

⊕
d≥0 R(d) is

a graded algebra.

Limit 2 Let S(d) be the set of formal linear combinations of all
monomials of degree d in x1, x2, . . . . Again S =

⊕
d≥0 S(d) is a

graded algebra.
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Theorems about limit algebras

For any graded algebra we can define strength. Now there can be
non-decomposable elements of degree > 1, they have ∞ strength.

Erman–Sam–Snowden: Both R and S are isomorphic to
polynomial rings. We have ν(f1, . . . , fn) =∞ if and only if
{f1, . . . , fn} can be extended to a list of algebraically independent
generators.

Proof of A-H: If A-H were false, then we can find collections of
non-regular sequences f

(i)
1 , . . . , f

(i)
n of degree ≤ D such that

limi ν →∞.
Take ultralimit fj = ulimi f

(i)
j to get elements of R.

Theorem says that f1, . . . , fn are a regular sequence. A technical
argument implies that this must be true for infinitely many of the
original sequences.
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Ultraproducts

Start with non-principal ultrafilter, a collection F of infinite
subsets of N such that

• Closed under intersection and taking supersets

• For all S ⊂ N, either S ∈ F or N \ S ∈ F .

For sequences (xi ) and (yi ), x ∼ y if {i | xi = yi} ∈ F .

Ultraproduct of X0,X1, . . . is X =
∏

i Xi/ ∼.
Inherits structure, for example Xi are rings implies X is a ring
More subtle: Xi are fields implies X is a field

Very flexible: any sequence has a well-defined limit (so proposed
counterexamples don’t need to be checked for “convergence”)
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Derivational criterion for polynomiality

The proof of our theorem uses:
Theorem (ESS): Let A =

⊕
d≥0 Ad be a commutative algebra

with A0 a field of characteristic 0. Suppose for all f ∈ Ad with
d > 0, there exists a negative degree derivation ∂ such that
∂(f ) 6= 0. Then any minimal set of generators of A is algebraically
independent.

Verification in our examples is easy: let ∂i be partial derivative with
respect to xi ; then for all f , there is some i such that ∂i (f ) 6= 0.

16 / 18



A topological approach

A topological space X is noetherian if every descending chain of
closed subsets Z1 ⊇ Z2 ⊇ · · · satisfies Zi = Zi+1 for i � 0.

Holds for algebraic varieties (e.g., f.dim. vector spaces) with
Zariski topology
A general method for proving boundedness of f :
Zi = {x | f (x) ≥ i} (if closed)

Big if: a lot of functions require further refinement of X (flattening
stratification)

Naive strategy: for fixed d1, . . . , dn, tuple of homogeneous
polynomials with those degrees in variables x1, x2, . . . has Zariski
topology. Take f = pdim. Try to find flattening stratification. Not
noetherian though.
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GL-noetherianity

Space of polynomials not noetherian, but has GL group action
(change of basis). We only care about subsets invariant under GL.
Refine noetherian to GL-noetherian: only consider chains of
GL-invariant closed subsets.

Draisma proved that space of tuples of polynomials is
GL-noetherian. Can use this idea to give different proof of Stillman
conjecture.
In fact, Draisma shows any polynomial functor is GL-noetherian.
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