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Green's conjecture

Fix alg. closed field k of characteristic 0.

C is a (smooth) genus g > 2 curve with canonical bundle wc.
The canonical ring F'c = P 4>0 HO(C;w?d) is finitely
generated over A = SymH%(C;wc) 2 k[xq, ..., Xxg].

We're concerned with vanishing of Betti numbers

ﬁ,"j(C) = dimk TOF;-L‘(rc, k)J'.

Green’s conjecture states that §; ;12(C) = 0 for

i < Cliff(C), the Clifford index of C. This governs for how
many steps the equations of C have only linear syzygies.
For “most” curves, Cliff(C) = gon(C) — 2 where gon(C) is
the minimum degree of a non-constant map C — P
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What's known

Voisin (2002, 2005): There is a nonempty Zariski dense set of
curves in the moduli space of curves for which Green's
conjecture holds. Geometric proof involving K3 surfaces.
Note: Cliff(C) < (g —1)/2 for all C

Refinement: In fact, this set contains curves of each gonality.
Aprodu—Farkas (2011): Green's conjecture holds for any curve
that lies on a K3 surface.

Many other variations...

Aprodu—Farkas—Papadima—Raicu-Weyman (2019): Reproved
Voisin's result using representation theory ideas (next slide).
Method of proof is simpler and extends to positive
characteristic p > (g +2)/2

Schreyer (1986): Green's conjecture fails in low characteristic
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Rational cuspidal cubics

Betti numbers are semicontinuous, i.e., the Betti numbers of a
flat degeneration can only go up. Hence, to prove (generic)
vanishing, it suffices to prove it for a single example, and we
can consider singular (smoothable) curves.

A rational curve with g cusps has genus g and can be realized
as a hyperplane section of the tangential surface T, of the
g-uple rational normal curve (= the union of its tangent lines).

There is a short exact sequence of graded modules
0— k[Tg] — k[Tg] — wk[p17o(g)](—].) — 07

consisting of the homog. coordinate ring of T, its
normalization, and the canonical module of the homog.
coordinate ring of the g-uple RNC.

The latter two can be understood, so it amounts to
understanding a long exact sequence on Tor.
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® The problem reduces to showing that the following map is
surjective for i < (g —1)/2:

Tor/ (k[ Tg], k)i41 ——————— Tor?(wippr.o(e): k)i

i+1 i
/\ (SymE 2 k%) ® D¥(Kk?) \(Sym&~1 k%) @ Sym&E—2/(k?)

® The group SLy(k) acts on everything in sight, so the map is
equivariant. However, it is difficult to guess a formula.

® There is more structure though: we fix / and sum over all g.
It turns out that both are f.g. modules over Sym(D*1k?) and
the sum of maps is linear.

® The actual way forward is technical but insight comes from
Hermite reciprocity isomorphism:

m

Sym”(Dme) = /\(Sym"”'"_1 k2).
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Koszul modules

The key to using the module structure on the sum is that the
cokernel can be recast as a Koszul module.

Given a subspace K € A? V, the Koszul module W(V, K) is
the middle homology of the modified Koszul complex

SymV ® K — SymV ® V(1) — Sym V(2)

In previous setting, V = D'*1k? and K = D?k?.
AFPRW proved the following are equivalent:

°* K+ cC /\2 V* contains no nonzero rank 2 matrix

o W(V,K) is finite length

* W(V,K)y=0forall d >dimV -3
This is enough to prove Green's conjecture for rational
cuspidal curves, and hence for a nonempty dense subset of
curves in the moduli space of curves.
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K3 carpets

® Double structures on P! (ribbons) give a different
degeneration of genus g curves (intuition: if a
non-hyperelliptic curve degenerates to a hyperelliptic one, this
is the degeneration of the image of the canonical map)

They are hyperplane sections of double structures on rational
normal scrolls. More precisely, consider the projective space

P& = P(Sym?k® @ Sym# 17 k?)

with an a-uple RNC and (g — 1 — a)-uple RNC. Let B be the
homog. coordinate ring of the corresponding scroll.

There is an extension
0—swg—B —-B—=0

where B’ is the homog. coordinate ring of a K3 carpet. It is
a double structure on the scroll.
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Differences and results

The ribbons are smoothable to curves of gonality a. Hence
proving Green's conjecture for each ribbon proves it for most
curves of each gonality (not just the maximal value ones).
Can prove it holds in characteristic p > a. In generic case
a= (g —1)/2, this beats (g + 2)/2 from cuspidal curves and
resolves a conjecture of Eisenbud—Schreyer.

e Coordinate ring A of P(Sym? k?> @ Sym&~17?k?) is bigraded.

® The syzygies of wg and B are understood, so we again need

to consider a long exact sequence. The problem reduces to
showing that the following map is surjective for /i < a:

TOI’;-A_H(B, k),’+2 -|_0I",-4((,u,5>7 k),’+2
Di71k2® Sg73fik2®
i+1 i
/\(Saflk2 D Sg72fak2) /\(Saflk2 @ Sg72fak2)

8/9



Bigraded Koszul modules

We can decompose the last map into bigraded components,
fix them, and sum over all a, g. Again, both terms are f.g.
modules over a symmetric algebra and the cokernel is a
bigraded Koszul module.

Given vector spaces Vi, Vo and K C V; ® V), C /\2(V1 ® V),
W(V, K) is the middle homology of

Sym(V1 ) Vz) & V1(O, 1)
Sym(V1 D V2) X V2(1,0)

In previous setting, Vi = DVk?, V, = DVK?,
K = Du+vf2k2 4 Du+vk2-
Raicu—Sam:
® K+ C Vi ® V5 contains no nonzero rank < 2 matrix
®* W(V,K)ge=0ford,e>0
* W(V,K)ge=0ford>dimV,—2and e>dimV; —2.

As before, this proves Green's conjecture for ribbons.

Sym(VlEBVQ)(X)K — — Sym(Vl@Vz)
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