Bi-graded Koszul modules, K3 carpets, and Green's conjecture

Steven Sam
University of California, San Diego

January 7, 2021

Green's conjecture

- Fix alg. closed field \mathbf{k} of characteristic 0 .
- C is a (smooth) genus $g \geq 2$ curve with canonical bundle ω_{C}.
- The canonical ring $\Gamma_{C}=\bigoplus_{d \geq 0} \mathrm{H}^{0}\left(C ; \omega_{C}^{\otimes d}\right)$ is finitely generated over $A=\operatorname{Sym} \mathrm{H}^{0}\left(\bar{C} ; \omega_{C}\right) \cong \mathbf{k}\left[x_{1}, \ldots, x_{g}\right]$.
- We're concerned with vanishing of Betti numbers

$$
\beta_{i, j}(C)=\operatorname{dim}_{\mathbf{k}} \operatorname{Tor}_{i}^{A}\left(\Gamma_{C}, \mathbf{k}\right)_{j} .
$$

- Green's conjecture states that $\beta_{i, i+2}(C)=0$ for $i<\operatorname{Cliff}(C)$, the Clifford index of C. This governs for how many steps the equations of C have only linear syzygies.
- For "most" curves, Cliff $(C)=\operatorname{gon}(C)-2$ where gon (C) is the minimum degree of a non-constant map $C \rightarrow \mathbf{P}^{1}$.

What's known

- Voisin (2002, 2005): There is a nonempty Zariski dense set of curves in the moduli space of curves for which Green's conjecture holds. Geometric proof involving K3 surfaces. Note: $\operatorname{Cliff}(C) \leq(g-1) / 2$ for all C Refinement: In fact, this set contains curves of each gonality.
- Aprodu-Farkas (2011): Green's conjecture holds for any curve that lies on a K3 surface.
- Many other variations...
- Aprodu-Farkas-Papadima-Raicu-Weyman (2019): Reproved Voisin's result using representation theory ideas (next slide). Method of proof is simpler and extends to positive characteristic $p \geq(g+2) / 2$
- Schreyer (1986): Green's conjecture fails in low characteristic

Rational cuspidal cubics

- Betti numbers are semicontinuous, i.e., the Betti numbers of a flat degeneration can only go up. Hence, to prove (generic) vanishing, it suffices to prove it for a single example, and we can consider singular (smoothable) curves.
- A rational curve with g cusps has genus g and can be realized as a hyperplane section of the tangential surface T_{g} of the g-uple rational normal curve ($=$ the union of its tangent lines).
- There is a short exact sequence of graded modules

$$
0 \rightarrow \mathbf{k}\left[T_{g}\right] \rightarrow \widetilde{\mathbf{k}\left[T_{g}\right]} \rightarrow \omega_{\mathbf{k}\left[\mathbf{P}^{1}, \mathcal{O}(g)\right]}(-1) \rightarrow 0
$$

consisting of the homog. coordinate ring of T_{g}, its normalization, and the canonical module of the homog. coordinate ring of the g-uple RNC.

- The latter two can be understood, so it amounts to understanding a long exact sequence on Tor.
- The problem reduces to showing that the following map is surjective for $i \leq(g-1) / 2$:

$$
\operatorname{Tor}_{i}^{A}\left(\widetilde{\mathbf{k}\left[T_{g}\right]}, \mathbf{k}\right)_{i+1} \longrightarrow \operatorname{Tor}_{i}^{A}\left(\omega_{\mathbf{k}\left[\mathbf{P}^{1}, \mathcal{O}(g)\right]}, \mathbf{k}\right)_{i}
$$

$$
i+1
$$

$$
\bigwedge\left(\mathrm{Sym}^{g-2} \mathbf{k}^{2}\right) \otimes \mathrm{D}^{2 i}\left(\mathbf{k}^{2}\right)
$$

$$
\bigwedge^{i}\left(\operatorname{Sym}^{g-1} \mathbf{k}^{2}\right) \otimes \operatorname{Sym}^{g-2-i}\left(\mathbf{k}^{2}\right)
$$

- The group $S L_{2}(\mathbf{k})$ acts on everything in sight, so the map is equivariant. However, it is difficult to guess a formula.
- There is more structure though: we fix i and sum over all g. It turns out that both are f.g. modules over $\operatorname{Sym}\left(\mathrm{D}^{i+1} \mathbf{k}^{2}\right)$ and the sum of maps is linear.
- The actual way forward is technical but insight comes from Hermite reciprocity isomorphism:

$$
\operatorname{Sym}^{n}\left(\mathrm{D}^{m} \mathbf{k}^{2}\right) \cong \bigwedge^{m}\left(\operatorname{Sym}^{m+n-1} \mathbf{k}^{2}\right)
$$

Koszul modules

- The key to using the module structure on the sum is that the cokernel can be recast as a Koszul module.
- Given a subspace $K \subset \bigwedge^{2} V$, the Koszul module $W(V, K)$ is the middle homology of the modified Koszul complex

$$
\operatorname{Sym} V \otimes K \rightarrow \operatorname{Sym} V \otimes V(1) \rightarrow \operatorname{Sym} V(2)
$$

- In previous setting, $V=\mathrm{D}^{i+1} \mathbf{k}^{2}$ and $K=\mathrm{D}^{2 i} \mathbf{k}^{2}$.
- AFPRW proved the following are equivalent:
- $K^{\perp} \subset \bigwedge^{2} V^{*}$ contains no nonzero rank 2 matrix
- $W(V, K)$ is finite length
- $W(V, K)_{d}=0$ for all $d \geq \operatorname{dim} V-3$

This is enough to prove Green's conjecture for rational cuspidal curves, and hence for a nonempty dense subset of curves in the moduli space of curves.

K3 carpets

- Double structures on \mathbf{P}^{1} (ribbons) give a different degeneration of genus g curves (intuition: if a non-hyperelliptic curve degenerates to a hyperelliptic one, this is the degeneration of the image of the canonical map)
- They are hyperplane sections of double structures on rational normal scrolls. More precisely, consider the projective space

$$
\mathbf{P}^{g}=\mathbf{P}\left(\text { Sym }^{a} \mathbf{k}^{2} \oplus \text { Sym }^{g-1-a} \mathbf{k}^{2}\right)
$$

with an a-uple RNC and ($g-1-a$)-uple RNC. Let B be the homog. coordinate ring of the corresponding scroll.

- There is an extension

$$
0 \rightarrow \omega_{B} \rightarrow B^{\prime} \rightarrow B \rightarrow 0
$$

where B^{\prime} is the homog. coordinate ring of a K 3 carpet. It is a double structure on the scroll.

Differences and results

- The ribbons are smoothable to curves of gonality a. Hence proving Green's conjecture for each ribbon proves it for most curves of each gonality (not just the maximal value ones).
- Can prove it holds in characteristic $p \geq a$. In generic case $a=(g-1) / 2$, this beats $(g+2) / 2$ from cuspidal curves and resolves a conjecture of Eisenbud-Schreyer.
- Coordinate ring A of $\mathbf{P}\left(\right.$ Sym $\left.^{a} \mathbf{k}^{2} \oplus \operatorname{Sym}^{g-1-a} \mathbf{k}^{2}\right)$ is bigraded.
- The syzygies of ω_{B} and B are understood, so we again need to consider a long exact sequence. The problem reduces to showing that the following map is surjective for $i<a$:

Bigraded Koszul modules

- We can decompose the last map into bigraded components, fix them, and sum over all a, g. Again, both terms are f.g. modules over a symmetric algebra and the cokernel is a bigraded Koszul module.
- Given vector spaces V_{1}, V_{2} and $K \subset V_{1} \otimes V_{2} \subset \bigwedge^{2}\left(V_{1} \oplus V_{2}\right)$, $W(V, K)$ is the middle homology of

$$
\operatorname{Sym}\left(V_{1} \oplus V_{2}\right) \otimes K \rightarrow \begin{gathered}
\operatorname{Sym}\left(V_{1} \oplus V_{2}\right) \otimes V_{1}(0,1) \\
\operatorname{Sym}\left(V_{1} \oplus V_{2}\right) \otimes V_{2}(1,0)
\end{gathered} \rightarrow \operatorname{Sym}\left(V_{1} \oplus V_{2}\right)
$$

- In previous setting, $V_{1}=\mathrm{D}^{u} \mathbf{k}^{2}, V_{2}=\mathrm{D}^{v} \mathbf{k}^{2}$, $K=\mathrm{D}^{u+v-2} \mathbf{k}^{2}+\mathrm{D}^{u+v} \mathbf{k}^{2}$.
- Raicu-Sam:
- $K^{\perp} \subset V_{1}^{*} \otimes V_{2}^{*}$ contains no nonzero rank ≤ 2 matrix
- $W(V, K)_{d, e}=0$ for $d, e \gg 0$
- $W(V, K)_{d, e}=0$ for $d \geq \operatorname{dim} V_{2}-2$ and $e \geq \operatorname{dim} V_{1}-2$.

As before, this proves Green's conjecture for ribbons.

