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What is it?

The talk will go in a different order, but here is how we came to
these topics:

• The syzygies of generic determinantal varieties have an
unexpected Lie superalgebra symmetry, as shown in works of
Akin, Pragacz, Raicu, Sam, Weyman.

• We realized that this is related to the structure sheaf of the
supergrassmannian (more on this later) via Kempf collapsing
(the “geometric technique” in Weyman’s book).

• This geometric setup naturally constructs finite covers of
determinantal varieties; we later realized these are examples of
splitting rings (which are fundamental in intersection theory).

• To get a satisfactory picture, we needed to develop basic
algebraic properties of these rings.
The setup is elementary, so we start there.
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Splitting rings

• Let f (t) be a degree n monic polynomial over A.

• The splitting ring of f , SplitA(f ), is the quotient of
A[ξ1, . . . , ξn] in which the following equality holds:

(t − ξ1) · · · (t − ξn) = f (t).

• If n = 2, this is the usual construction of adjoining a root of f .

• Compatible with base change: given ϕ : A→ A′, then

SplitA′(ϕ(f )) = A′ ⊗A SplitA(f ).

• Universal construction:
Auniv = Z[a1, . . . , an] with f (t) = tn + a1t

n−1 + · · ·+ an;
SplitAuniv(f ) ∼= Z[ξ1, . . . , ξn].
Some things can be deduced from this case and base change.
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First properties

• The universal case behaves really well; standard argument
shows that a1 = · · · = an = 0 is “most degenerate” example.
That case is well-known in algebraic combinatorics as the
coinvariant ring of the symmetric group.

• It’s a complete intersection and SplitAuniv(f ) is free of rank n!.
Monomial basis: ξp11 · · · ξ

pn
n where 0 ≤ pi ≤ n − i .

(More interesting basis: Schubert polynomials – important objects in
intersection theory of flag varieties)

• Thus, SplitA(f ) is a free A-module of rank n! for all A.
(SplitA(f ) is isomorphic to the regular representation of Sn over A if and
only if n! is invertible in A)

• Important example: let E be a rank n vector bundle over a
smooth variety X , A the Chow ring of X , and f the Chern
polynomial of E . Then SplitA(f ) is the Chow ring of the
relative flag variety of E (this realizes the “splitting principle”
in intersection theory – the ξi are the Chern roots).

4 / 19



More properties

Let ψ : A→ SplitA(f ) be inclusion map.
Let ∆ =

∏
i 6=j(ξi − ξj) be discriminant (it belongs to A).

• ψ is syntomic (i.e., flat of finite presentation and all fibers are
local complete intersections).

• (Laksov) ψ admits an A-linear splitting.

• If A is Cohen–Macaulay, then so is SplitA(f ) (more generally,
if A satisfies Serre’s condition (Sk) so does SplitA(f )).

• If ∆ is a unit, then ψ is étale.

• If ∆ is NZD and A is reduced, then SplitA(f ) is reduced.
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Normality criterion

We needed to prove that SplitA(f ) is normal for specific example.

Example

A = Z and f (t) = t2 − 5.
Then SplitA(f ) ∼= Z[

√
5] is not normal.

Theorem

Suppose that

• A is normal,

• ∆ is a nonzerodivisor,

• For any prime p ⊂ A, ∆ ∈ p2Ap implies that codim p ≥ 2.

Then SplitA(f ) is normal.

In our example, ∆ = 20; taking p = (2) violates the condition.
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Factorization rings

f (t) ∈ A[t] is a degree n monic polynomial.
Pick p + q = n and let Factp,qA (f ) be the quotient of
A[b1, . . . , bp, c1, . . . , cq] by relations g(t)h(t) = f (t) where

g(t) = tp + b1t
p−1 + · · ·+ bp,

h(t) = tq + c1t
q−1 + · · ·+ cq.

Let A′ = Factp,qA (f ); we have a natural isomorphism

SplitA(f ) = SplitA′(g)⊗A SplitA′(h).

• A′ is free of rank
(n
p

)
over A

• A→ A′ is syntomic (flat, finite presentation, and lci)

• If A is Cohen–Macaulay then so is A′.

• If SplitA(f ) is reduced or normal, then so is A′.

• Gives Chow ring of Grassmannian bundles
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Determinantal varieties

Motivation comes from superalgebra structure on Tor groups of
determinantal variety.

Let E ,F be complex vector spaces and consider X = Hom(E ,F )
and for each r ≥ 0, Xr is subvariety of rank ≤ r linear maps.

gl(E )× gl(F ) acts on Tor•(C[Xr ],C) by linear substitution
Hom(E ,F )∗ = Hom(F ,E ) acts (skew-commutatively) via Tor
algebra multiplication

Tor•(C[Xr ],C)→ Tor•+1(C[Xr ],C).

This combines to give action of Lie superalgebra[
gl(E ) Hom(F ,E )

0 gl(F )

]
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Superalgebra structure

Surprisingly, there exists an action of Hom(E ,F )

Tor•(C[Xr ],C)→ Tor•−1(C[Xr ],C).

that fills in the whole matrix, i.e., gives an action of the entire Lie
superalgebra

gl(E |F ) =

[
gl(E ) Hom(F ,E )

Hom(E ,F ) gl(F )

]
(There is also a commutative version of this involving gl(E ⊕ F )
acting on C[Xr ] – not sure if there’s any connection)
This rigidifies the Tor groups quite a bit; result was proven in
several different ways (Pragacz–Weyman, Akin–Weyman, Sam,
Raicu–Weyman)

We wanted to understand a “natural” reason for this action.
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Kempf collapsing: example

Consider case dimE = r + 1 ≤ dimF , so that Xr consists of linear
maps with a nonzero kernel.

If L ⊂ E is 1-dimensional, we “linearize” Xr by considering all
maps E → F which factor through E/L (this is just Hom(E/L,F ))
and varying choice of L.

More precisely: choice of L is a point in projective space P(E ).
O(−1) embeds into E × P(E ) and fiber over [L] ∈ P(E ) is just
L× [L]. The “linearization” above is the vector bundle
Hom(E/O(−1),F ) over P(E ).

This maps to Hom(E ,F ) and the image is precisely Xr .
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We can find a locally free resolution of Hom(E/O(−1),F ) inside
the trivial bundle Hom(E ,F )× P(E ) easily since it’s a subbundle.

Namely, it is locally cut out by linear equations – the dual of the
quotient bundle O(−1)⊗ F ∗, so we get the Koszul complex on
this bundle.

Via standard homological algebra, we then get

Tori (C[Xr ],C)i+j = Hj(P(E );

i+j∧
(O(−1)⊗ F ∗))

and the latter can be computed explicitly if you know the
cohomology of line bundles on projective space.
This is Kempf’s construction of the Eagon–Northcott complex.
This relies on knowing that C[Xr ] is the derived pushforward of the
structure sheaf of Hom(E/O(−1),F ) which follows from Tor0 = C
and Tori = 0 for i < 0.
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Kempf collapsing

This generalizes quite a bit. Consider the following data:

• V is a projective variety

• E is a vector space

• ξ ⊂ E × V is a subbundle with quotient bundle η.

Cohomology of
∧•(ξ) computes Tor of the derived pushforward of

Sym(η) under projection E ∗ × V → E ∗.

Best situation is if higher direct images vanish, map is birational,
and image is normal, so we get Tor groups of a subvariety of E ∗.

Can do general determinantal varieties: P(E ) is replaced by a
Grassmannian and O(−1) is replaced with the tautological
subbundle R.
Hence: is there a more obvious structure on

∧•(ξ) which gives
superalgebra symmetry?
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Supergeometry

Given a graded-commutative superalgebra A, can define prime
spectrum Spec(A) as a locally ringed space by mimicking usual
definition (now have a sheaf of superalgebras). Superschemes are
locally ringed spaces which are locally of the form Spec(A).

These are generally non-reduced, so we can’t describe them using
geometric points; better to use the functor of points perspective.

Given a super vector space V and integers 0 ≤ d ≤ dimV0 and
0 ≤ e ≤ dimV1, there is a supergrassmannian Gr(d |e,V ).

For a superalgebra T , the T -valued points are submodules of
T ⊗ V which are locally free of rank d |e (i.e., locally isomorphic to
T⊕d ⊕ T [1]⊕e).
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Supergrassmannians

The underlying topological space of Gr(d |e,V ) is
Gr(d ,V0)× Gr(e,V1); the structure sheaf O is not easy to
describe.

However, let J be the ideal sheaf generated by odd elements.

The associated graded of O with respect to J is the exterior
algebra on vector bundle J /J 2 (this is true for any smooth
superscheme) and

J /J 2 ∼= Hom(Q1,R0)⊕ Hom(Q0,R1)

where R0 is tautological subbundle on Gr(d ,V0), Q0 = V0/R0,
and similarly for R1,Q1.
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Connection to determinantal varieties

ξ = Hom(Q1,R0)⊕ Hom(Q0,R1) is a subbundle of the trivial
bundle Hom(V1,V0)⊕ Hom(V0,V1). Let η be the quotient.

The cohomology of
∧•(ξ) computes two things:

• Tor groups of derived pushforward of Sym(η).

• Input to spectral sequence

Hp+q(Gr(d ,V0)× Gr(e,V1);

p∧
ξ) =⇒ Hp+q(Gr(d |e,V );OGr(d |e,V )).

We show:

• Higher direct images of Sym(η) vanish (not straightforward),
but map is not birational!

• The spectral sequence degenerates.

Structure sheaf of Gr(d |e,V ) has gl(V )-action, and so does its
cohomology. Degeneracy implies Tor groups also have this
structure.
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Special case

Consider e = 0, so R1 = 0 and Q1 = V1. Then

ξ = Hom(V1,R0).

This is exactly the bundle used in Kempf collapsing approach to
determinantal variety.
There is an extra Hom(V1,V0) factor which doesn’t affect Tor
calculations.

So up to shifting incides, the Tor groups of determinantal variety
give cohomology of structure sheaf of Gr(d |0,V ).

Degeneracy of spectral sequence comes from the fact that the Tor
groups are multiplicity-free as representation of gl(V0)× gl(V1).
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General case

• Let n = dimV0, m = dimV1, assume WLOG d ≥ e ≥ 0. Set

δ =

{
m − n + d − e if d − e > n −m

0 else
.

• W = Hom(V0,V1)× Hom(V1,V0) with coordinate ring OW .
• Let Z ⊂W consist of pairs (f , g) such that rank f ≤ m − δ.
• χ(u) ∈ OZ [u] is characteristic polynomial of fg ; χ = χ/uδ.

Zero locus of ξ is subbundle of W × Gr(d ,V0)× Gr(e,V1) of
tuples (f , g ,R0,R1) such that f (R0) ⊆ R1, g(R1) ⊆ R0.

Theorem

• Higher direct images of Sym(η) vanish

• Pushforward of Sym(η) is FactOZ
e,m−δ−e(χ). It is normal, C-M

and has rational singularities.

• TorOW
0 (FactOZ

e,m−δ−e(χ),C) ∼= H∗sing(Gr(e,Cm−δ),C).

• H∗(Gr(d |e,V ),O) is this tensored with Tor algebra of Z .
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Normality of FactOZ

e,m−δ−e(χ)

Need: (1) OZ normal; (2) ∆ NZD; (3) ∆ ∈ p2OZ ,p =⇒ codim p ≥ 2

(1) Well-known; can be deduced from Kempf approach
(2) ∆ 6= 0: write down example (diagonal matrices) where char.
poly. of fg has no repeated roots
In fact, we show ∆ is irreducible using classification of pairs (f , g).
(3) Since ∆ is irreducible, just need one closed point m where
m ∈ V (∆) but ∆ /∈ m2OZ ,m:

f =

[
0 0
0 A

]
, A =

λ 1 0
ε λ 0
0 0 diag

 , g =

[
0 0
0 id

]

diag has distinct eigenvalues from λ and ε2 = 0; ∆ is unit times ε

Have explicit presentation of splitting ring, so can prove normality
using Jacobian criterion (calculation somewhat similar but more
bookkeeping)
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Generalizations

Determinantal varieties in symmetric or skew-symmetric matrices?
gl(n|m) replaced by periplectic Lie superalgebra pe(n) ⊂ gl(n|n)[

A B
C −AT

]
, B = BT , C = −CT .

Supergeometry approach leads to determinantal varieties in
Sym2(V )⊕

∧2(V ∗) (unifies both cases strangely – hint of that:
representations in Tor are the same). [work in progress]

Splitting rings replaced by signed splitting rings (for monic
polynomial f in u2, consider factorizations into (u2 − ξ2i )) and
similar analogue for factorization rings.
These are related to Chow rings of isotropic flag varieties of
symplectic vector bundles.

Instead of supergrassmannians, makes sense to consider general
super flag varieties. [complicated, some partial progress]
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