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Throughout, k will refer to an algebraically closed field (not fixed). Stillman’s
conjecture (now a theorem of Ananyan–Hochster [AH]) is the following statement:

Theorem 1 (Ananyan–Hochster). Fix integers d1, . . . , dr ≥ 1. There is a constant
C such that any ideal in k[x1, . . . , xn] generated by homogeneous polynomials of
degrees d1, . . . , dr has projective dimension ≤ C (independent of n and k).

The motivation for the work in this talk was to show this as a consequence of
a more basic structural result. Our first idea involved “GL-noetherianity”:

• Remove independence on n by working in k[x1, x2, . . . ] = Sym(k∞).
• The relevant parameter space for choices of polynomials is

X = Symd1(k∞)× · · · × Symdr (k∞).

• For each d, we define a GL∞(k)-equivariant subset

X≥d = {(f1, . . . , fr) ∈ X | pdim(f1, . . . , fr) ≥ d},

which gives a decreasing chain X≥1 ⊇ X≥2 ⊇ · · · .
• If each X≥d is closed and X is GL∞(k)-noetherian (i.e., decreasing chains

of closed GL∞(k)-invariant subsets always stabilize), then we would have
X≥d = X≥d+1 for d� 0 and get an upper bound for projective dimension.
• Noetherianity follows from work of Draisma [Dr]; closedness of X≥d is less

clear. A priori, it is only an infinite union of closed sets given by vanishing
conditions on graded Betti numbers: βd,d = βd,d+1 = · · · = 0.

This idea can be developed to give a proof (see [ESS1, §5]), but we ended up
finding a simpler proof which we explain.

A key step to proving this is the notion of strength [AH]: a homogeneous
element f in a graded ring has strength ≤ s if we can write f = g1h1 + · · ·+ gshs
with gi, hi homogeneous and 0 < deg gi < deg f for all i. The strength is s if it
has strength ≤ s but not strength ≤ s− 1. The strength is ∞ if there is no such
decomposition. The strength of a linear space of elements is the minimal strength
of a nonzero homogeneous element in it. Then:

Theorem 2 (Ananyan–Hochster). Fix integers d1, . . . , dr ≥ 1. Given polynomials
f1, . . . , fr with deg(fi) = di, if the strength of 〈f1, . . . , fr〉 is sufficiently large (with
respect to d1, . . . , dr), then f1, . . . , fr is a regular sequence.

In particular, there is a constant C such that any f1, . . . , fr ∈ k[x1, . . . , xn]
with deg(fi) = di belong to a subalgebra generated by a regular sequence with ≤ C
homogeneous elements.
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The C in the theorem gives a bound for the original statement: a minimal free
resolution for (f1, . . . , fr) can first be computed in the subalgebra generated by the
regular sequence; by flatness, its base change to k[x1, . . . , xn] remains a resolution.

Ultraproducts give a context for working with the notion of “sufficiently large”
without having to explicitly identify bounds.

Let I be an infinite set (typically the positive integers). We fix a non-principal
ultrafilter F on I, which is a collection of subsets of I satisfying the following
properties:

(1) F contains no finite sets,
(2) if A ∈ F and B ∈ F , then A ∩B ∈ F ,
(3) if A ∈ F and A ⊆ B, then B ∈ F ,
(4) for all A ⊆ I, either A ∈ F or I \A ∈ F (but not both).

Intuition: the sets in F are neighborhoods of some hypothetical (and non-existent)
point ∗ of I. We say that some condition holds near ∗ if it holds in some neigh-
borhood of ∗.

Given a family of sets {Xi}i∈I , their ultraproduct ulimi∈I Xi is the quotient of
the usual product

∏
i∈I Xi in which two sequences (xi) and (yi) are identified if

the equality xi = yi holds near ∗.
Suppose that each Xi is a graded abelian group. We define the graded ul-

traproduct of the Xi’s to be the subgroup of the usual ultraproduct consisting
of elements x such that deg(xi) is bounded near ∗. The graded ultraproduct is a
graded abelian group; the degree d piece of the graded ultraproduct is the usual
ultraproduct of the degree d pieces of the Xi’s. We again denote this by ulimiXi.

The following 3 statements about ultraproducts and regular sequences give a
proof of Stillman’s conjecture:

Lemma 1. For i ≥ 1, let Vi be linear subspaces of polynomial rings Ri with
strength tending to ∞. Then ulimi Vi ⊂ ulimiRi has infinite strength.

This follows from the definitions of ultraproducts.

Theorem 3. For i ≥ 1, let Ri = ki[x1, x2, . . . ] with deg(xj) = 1. Let S = ulimiRi

and let m be its homogeneous maximal ideal. Let E ⊂ m be a subset of homogeneous
elements whose image in m/m2 is a basis (over K = ulimi ki). Then S is a
polynomial ring over K with generators E.

Note that m2 is precisely the set of polynomials of finite strength, so a linear
subspace of m has infinite strength if and only if its image in m/m2 is linearly
independent.

Lemma 2. For i ≥ 1, let fi,1, . . . , fi,r ∈ Ri be homogeneous polynomials of degrees
d1, . . . , dr. Then ulimi fi,1, . . . ,ulimi fi,r ∈ ulimiRi is a regular sequence if and
only if fi,1, . . . , fi,r is a regular sequence for i near ∗.

Here is the proof that sufficiently large strength (relative to degrees) implies
regular sequence: if not, then we can find a sequence of polynomials (fi,1, . . . , fi,r)
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whose strength goes to ∞ for i� 0 but which do not form a regular sequence for
any i. The ultralimit has infinite strength in S (Lemma 1), which is then part of
an algebraically independent generating set for S (Theorem 3), and hence form a
regular sequence. But this contradicts Lemma 2.

Lemma 1 follows from the definitions.
Theorem 3 is proven with the following criterion for polynomiality:

Theorem 4. Let R be a Z≥0-graded ring over k (characteristic 0 and not neces-
sarily algebraically closed) with R0 = k. Assume that R has “enough derivations”,
i.e., for every positive degree element f , there exists a negative degree derivation
∂ of R such that ∂(f) 6= 0. Then R is a polynomial ring over k, and a generating
set can be obtained by taking any lift of a k-basis for R>0/R

2
>0.

For fields of positive characteristic, this doesn’t work (pth powers are killed by
any derivation and Fp[x]/(xp) has enough derivations) but we can give slightly
different criteria using Hasse derivatives (∂kx

n =
(
n
k

)
xn−k) when k is perfect (the

imperfect case is handled in [ESS2]).
The idea is that any lift of a basis for R>0/R

2
>0 generates R, and the derivations

are used to show that these elements don’t satisfy any nontrivial algebraic relations
since any relation can always be used to produce one of lower degree. To get the
derivations on S, we can take ultraproducts of usual partial derivatives.

Finally, here is a sketch of the proof of Lemma 2:

• Let S = ulimiRi and let I = ulimi Ii with Ii ⊆ Ri ideals generated in
the same degrees. We will show that codim I = codim Ii for i near ∗ and
apply this to the ideals generated by fi,1, . . . , fi,r.

Also, set R′i = ki[x2, x3, . . . ] and S′ = ulimiR
′
i. Then S′[x1] ∼= S.

• First, codim(I) < ∞ since I is finitely generated and defined by finitely
many of the variables in E . Let c = codim(I).

• Now do induction on c. If c = 0, then I = 0 and Ii = 0, so there is nothing
to show. Otherwise, pick nonzero f ∈ I.

• Pick change of variables γ so that γ(f) is monic as a polynomial in x1.
Then codimS(I)− 1 = codimS′(S′ ∩ I) since S′ → S/(f) is finite and flat.
Now use the induction hypothesis.
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