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1. Introduction

The goal of these lectures is to describe two different aspects of representation stability:

• A generalization of homological stability in the presence of additional symmetry.
• A framework for proving uniformity / boundedness results in commutative algebra /
algebraic geometry, again in the presence of symmetries.

Here are two examples of such theorems.

1.1. Cohomology of configuration spaces. Let X be a connected oriented manifold of
dimension ≥ 2 such that dimQ H∗(X;Q) <∞ and define

Confn(X) = {(x1, . . . , xn) ∈ Xn | xi 6= xj for i 6= j}.

It carries an action of the symmetric group Σn.

Theorem 1.1 (McDuff, Segal, Church, ...). Fix an integer i ≥ 0.

(a) The function n 7→ dimQ Hi(Confn(X)/Σn;Q) is constant for n≫ 0.
(b) The function n 7→ dimQ Hi(Confn(X);Q) agrees with a polynomial for n≫ 0.

The first is an example of homological stability: a family of (co)homology groups of a
sequence of objects which are eventually constant. More precisely, one wants naturally
defined transition maps which are eventually isomorphisms. The second is an example
where homological stability fails: the polynomial in (b) often has positive degree, but can
be understood with the help of the symmetric group actions.

Example 1.2. About the dimension requirement: if X = [0, 1] is the unit interval, then
Confn(X) has n! connected components corresponding to the relative ordering of the points.
Hence dimQ H0(Confn(X);Q) = n! does not have polynomial growth. �

1.2. Equations defining border rank. Let V1, . . . , Vn be vector spaces over an alge-
braically closed field and V = V1⊗ · · · ⊗ Vn. An element of V of the form v1⊗ · · · ⊗ vn with
vi ∈ Vi is a simple tensor, and a general element has rank ≤ r if it can be expressed as a
sum of r simple tensors. Finally, an element in the Zariski closure of rank ≤ r tensors has
border rank ≤ r. They form an algebraic variety.

Example 1.3. The following example illustrates why the notion of border rank is needed,
i.e., why tensor rank is not semicontinuous.
Let n = 3 and dimVi = 2. Pick bases {a1, a2}, {b1, b2}, {c1, c2} of V1, V2, V3, respectively.

The element

v = a1 ⊗ b1 ⊗ c1 + a1 ⊗ b1 ⊗ c2 + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1

= a1 ⊗ b1 ⊗ (c1 + c2) + a1 ⊗ b2 ⊗ c1 + a2 ⊗ b1 ⊗ c1

has rank ≤ 3, and it can be shown that it does not have rank ≤ 2, so the rank is exactly 3.
However,

v = lim
ε→0

1

ε
((ε− 1)a1 ⊗ b1 ⊗ c1 + (a1 + εa2)⊗ (b1 + εb2)⊗ (c1 + εc2))

shows that v has border rank ≤ 2. �

1Last updated August 31, 2017.
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Remark 1.4. This variety is also the affine cone over the rth secant variety of the Segre
embedding of P(V1)× · · · ×P(Vn) in P(V). �

Theorem 1.5 (Draisma–Kuttler). For each r, there is a constant C(r) such that the variety
of border rank ≤ r tensors is cut out by polynomials of degree ≤ C(r). The constant is
independent of n and also the Vi.

Example 1.6. A familiar case is when n = 2. Then V can be thought of as the space of
a × b matrices where a = dimV1 and b = dimV2. In this case, a simple tensor is a rank 1
matrix, and rank r in the tensor sense corresponds to rank r in the matrix sense. Border
rank ≤ r is equivalent to rank ≤ r. The polynomials in this case are the determinants of all
(r + 1)× (r + 1) submatrices, and so they are of degree r + 1. When n ≥ 3, the situation is
more complicated. �

The general idea is to show that there is a way to take the limit as the parameters n
and dimVi go to ∞ and then to study the resulting limit space. Border rank is preserved
upon change of basis (with respect to each Vi) so there is a symmetry that can be used
in this problem. The existence of the constant can be then deduced from an equivariant
noetherianity property of the limit space.

2. First example: configuration spaces and FI-modules

2.1. FI-modules: definitions and basic properties. Theorem 1.1 can be understood
from the theory of FI-modules. Define [n] = {1, . . . , n}. To motivate the definition, consider
the symmetries of

⊕
n H

i(Confn(X)). First, for any permutation σ ∈ Σn, we can act on
Confn(X), and hence get a linear action on its cohomology. More generally, given an injection
f : [m]→ [n], we have a forgetful map

Confn(X)→ Confm(X)

(x1, . . . , xn) 7→ (xf(1), . . . , xf(m)),

and hence a map on cohomology f∗ : H
i(Confm(X)) → Hi(Confn(X)). Permutations are a

special case when m = n, and they behave “functorially”: (f ◦ g)∗ = f∗ ◦ g∗.
We can encode this algebraic structure as follows. Define FI to be the category whose

objects are the finite sets [n] for n = 0, 1, 2, . . . and whose morphisms are injective functions.
The discussion above shows that we can define a functor from FI to the category of abelian
groups by sending [n] to Hi(Confn(X)) and f to f∗. Alternatively, for any commutative ring
R, we get a functor to the category of R-modules by using Hi(Confn(X);R). We will call a
functor from FI to R-modules an FI-module over R.

Given an FI-module M , we can also consider the direct sum
⊕

n Mn together with all of
the operations f∗, one for each injective function f . Clearly, these are equivalent data, so
we will often think of them interchangably. A sequence of subspaces Nn ⊂ Mn is an FI-

submodule if it is closed under all of the f∗. A morphism between FI-modules M → M ′

is a natural transformation. Alternatively, it is a degree-preserving map
⊕

n Mn →
⊕

n M
′
n

that are linear with respect to the operations f∗.
We want to understand what constraints are put on a sequence of spaces Mn if they come

from an FI-module. Each Mn is a representation of the symmetric group Σn. However, little
else can be said. For example, take an arbitrary sequence {Mn} where Mn is a representation
of Σn. We can define an FI-module M by sending [n] to Mn, each permutation to its
corresponding action on Mn, and and all non-bijective injections to 0.
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Call an FI-module M finitely generated if
⊕

n Mn can be generated by finitely many
elements under addition and the operations f∗. Many things can be deduced about

⊕
n Mn

but we will limit ourselves to three properties:

Theorem 2.1. Let k be a field (for simplicity) and let M be a finitely generated FI-module
over k.

(a) The function n 7→ dimk Mn agrees with a polynomial for n≫ 0.
(b) Any submodule N ⊂M is also finitely generated.
(c) The sequence of coinvariants (Mn)Σn

has the structure of a finitely generated k[t]-
module.

Proof of (3). The action of Σn on the set of injections [m]→ [n] is transitive, so given any two
injections f, g, the induced maps (Mm)Σm

→ (Mn)Σn
are the same. We define a k[t]-module

structure by defining multiplication by tn−m on (Mm)Σm
to be the map just described. Finite

generation by k[t] is inherited from finite generation of M as an FI-module. �

2.2. Proof of Theorem 1.1.

(1) Given our assumptions on X (which can be weakened substantially), show that the
FI-module [n] 7→ Hi(Confn(X);k) is a finitely generated FI-module over k. Given
Theorem 2.1(a), this already proves (a).

(2) For k = Q, we have Hi(Confn(X)/Σn;Q) = Hi(Confn(X);Q)Σn . Furthermore,
coinvariants and invariants can be identified for linear representations of finite groups
over a field of characteristic 0, so

⊕
n H

i(Confn(X)/Σn;Q) can be equipped with the
structure of a finitely generated Q[t]-module.

(3) A finitely generated Q[t]-module is a direct sum of a free module and a torsion
module. In particular, the dimension is eventually constant (equal to the rank of the
free module). This proves (b).

Step 1 uses a spectral sequence argument due to Totaro and Theorem 2.1(b). The basic
idea comes from [Ch] and has been improved upon in a series of followup papers. First,
define a Z2-graded skew-commutative algebra E = H∗(Xn;k)[Ga,b] where 1 ≤ a < b ≤ n
where Hi(Xn;k) has degree (i, 0) and Ga,b has degree (0, dimX − 1). The Ga,b satisfy some
relations including G2

a,b = 0. Then E is the E2-page of a spectral sequence that converges to
H∗(Confn(X);k). The upshot is:

• The bigraded components of E naturally carry an FI-module structure compatible
with the spectral sequence.
• Hi(Confn(X);k) has a filtration whose associated graded is a subquotient of

⊕
p+q=i E

p,q.

Then the assumption on X guarantees that the initial terms are finitely generated as FI-
modules, and Theorem 2.1(b) guarantees that any subquotient of E is also finitely generated.
This gives the desired property. We will not go any further into those details here.

Example 2.2. For X = R2, we have

H∗(Confn(R
2);Q) = Q[wi,j | 1 ≤ i, j ≤ n, i 6= j]/I

where wi,j ∈ H1 (so we are taking an exterior algebra generated by the wi,j) and I is the
ideal generated by

wij = wji, wjk ∧ wkℓ + wkℓ ∧ wℓj + wℓj ∧ wjk = 0.
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One can show directly that each Hi is a finitely generated FI-module (the morphisms act on
the indices of the w). �

2.3. FI-modules: proofs. The remaining question is how to prove Theorem 2.1. We can
make a few reductions. First, for each n, define an FI-module Pn by

Pn([m]) = k[HomFI([m], [n])],

i.e., the formal linear span of all injections [m]→ [n]. This is a functor by having morphisms
act as post-composition. One can readily verify that a morphism Pn → M is determined
by where the identity map in Pn([n]) goes to in Mn, and that this choice can be made
arbitrarily. Hence, if M is generated by x1, . . . , xd where xi ∈Mni

, then we have a surjection⊕
i Pni

→M .
Theorem 2.1(b) says that finitely generated modules are noetherian. Noetherianity satis-

fies a few properties for formal reasons:

• Quotients of noetherian objects are noetherian.
• Direct sums of noetherian objects are noetherian.

In particular, it suffices to show that each Pn is noetherian. As for Theorem 2.1(b), we can
see by direct inspection that Pn has polynomial growth: dimPn([m]) = m(m−1) · · · (m−n+
1). In general, if M is generated by x1, . . . , xn, consider the filtration of M by submodules
M j which is generated by x1, . . . , xj. Each quotient is generated by a single element, and if
they have polynomial growth, so does M . So it actually suffices to check that submodules
of Pn have polynomial growth.

There are several approaches, but we follow the one that generalizes more easily. Define
a subcategory OI ⊂ FI to have the same objects, but only order-preserving injections are
taken as morphisms. Define an OI-module Qn by

Qn([m]) = k[HomOI([n], [m])].

Then the restriction of Pn to OI is a direct sum of n! copies of Qn: the copies are indexed by
permutations of [n], and an injective function f belongs to the copy indexed by σ if and only
if f ◦ σ is order-preserving. The advantage of working with the category OI is that we have
removed the symmetries, i.e., all automorphisms are trivial. This allows us to degenerate
submodules of Qn to those generated by monomials, i.e., elements of HomOI([n], [m]) (as
opposed to linear combinations of them). Let ef be the element corresponding to f ∈
HomOI([n], [m]).
To do this, first identify an ordered injection f : [n] → [m] with a sequence w(f) of 0’s

and 1’s of length m, where the ith letter is 0 if it is in the image of f , and 1 otherwise.
We compare these lexicographically, and given a linear combination x =

∑
f αfef , define

init(x) = ef where f is the largest element such that αf 6= 0. Finally, given a submodule
M ⊆ Qn, define a graded subspace

⊕
n init(M)n where init(M)n is the k-linear span of

init(x) for all x ∈Mn. This satisfies some important properties which are easily verified (for
details, see [SS, §§4, 7.1]):

• init(M) is an OI-submodule of Qn,
• dimk init(M)n = dimk Mn,
• If M ⊆ N ⊆ Qn and init(M) = init(N), then M = N ,
• init(M) is finitely generated (this also follows from the usual Hilbert basis theorem
subject to our identification of injections with monomials in n+ 1 variables below).
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In particular, if M ⊆ Qn is not finitely generated, we can pick x1, x2, · · · ∈M such that xn

is not generated by x1, . . . , xn−1. Let Mn be the submodule generated by x1, . . . , xn. This
gives a strictly increasing chain

M1 $ M2 $ · · · $ M

and hence a strictly increasing chain

init(M1) $ init(M2) $ · · · $ init(M).

Since init(M) is finitely generated, the finite generating set must live in some init(Mk), which
is a contradiction to the existence of M .
As for the polynomial growth statement, we are reduced to understanding monomial

submodules of Qn. These can be handled in a general framework using formal language
theory, but we will omit the details. Alternatively, one can identify w(f) with a monomial
m(f) in the polynomial ring k[x0, . . . , xn] by takingm(f) = xd0

0 · · · x
dn
n where di is the number

of 1’s between the (i − 1)th and ith instances of 0. Then submodules correspond to ideals
and one can use classical results from commutative algebra.

2.4. Other examples.

• LetMg,n be the moduli space of genus g curves with n marked points. Again, each
injection f : [n] → [m] induces a forgetful map Mg,m → Mg,n and hence a map
on cohomology Hi(Mg,n) → Hi(Mg,m). Work of Church–Ellenberg–Farb [CEF] and
Jimenez Rolland [JR] implies that for fixed i and g, the FI-module [n] 7→ Hi(Mg,n;Q)
is finitely generated.
• Congruence subgroups: given a positive integer ℓ, let Γn(ℓ) ⊂ GLn(Z) be the
subgroup of matrices which are the identity modulo ℓ. There is also a functor
[n] 7→ Hi(Γn(ℓ);R) and work of Putman [Pu] and Church–Ellenberg–Farb–Nagpal
[CEFN] shows it is finitely generated.

Compactifications of moduli spaces (e.g., Deligne–Mumford compactification ofMg,n and
Fulton–MacPherson compactification of Confn(X) when X is a projective variety) tend to
have exponentially growing cohomology as n varies, so they cannot be finitely generated
FI-modules.

There is a variant: instead of using injective functions, use surjective functions. Also,
use the opposite of the category so that morphisms still go up in degree. Call this FSop.
This is still well-behaved in that finite generation is preserved under taking submodules, but
now finitely generated objects can have exponential growth (consider the analogue of Pn

which sends [m] to the space of surjections [m]→ [n]). Using an explicit presentation of the
cohomology of M0,n, one can show it is a finitely generated FSop-module. Unfortunately,
I do not know if it has any natural geometric interpretation or the action makes sense for
higher genus (ignoring questions of finite generation). See [PY] for an example of FSop acting
on a partial compactification of Confn(R

2).
Linear variants of FI (using vector spaces over finite fields instead of finite sets) have been

studied in [PS].

3. Spaces of tensors

3.1. Equations for bounded rank tensors. We continue with the setup from the intro-
duction.
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Let V1, . . . , Vn be vector spaces and V = V1 ⊗ · · · ⊗ Vn. An element of V of the form
v1 ⊗ · · · ⊗ vn with vi ∈ Vi is a simple tensor, and a general element has rank ≤ r if it can be
expressed as a sum of r simple tensors.
Recall that on a vector space, such as V, the closed subsets of the Zariski topology are

those subsets which are the common solution set of a collection of polynomials. Without
loss of generality, we may always assume that the collection of polynomials forms an ideal.
We will only be interested in those closed sets which are closed under scalar multiplication,
and these are always defined by a collection of homogeneous polynomials. In this case, the
notion of a minimal generating set of polynomials for the ideal is well-defined.
An element in the Zariski closure of rank ≤ r tensors is said to have border rank ≤ r. The

following is in [DrK]:

Theorem 3.1 (Draisma–Kuttler). For each r, there is a constant C(r) such that the variety
of border rank ≤ r tensors is cut out by polynomials of degree ≤ C(r). The constant is
independent of n and also the Vi.

The outline of the proof is as follows:

(1) Reduce to the case that dimVi = r+1 for all i. Then construct an infinite limit space
V ⊗∞ together with an action of a group G∞. Also construct a limit of the border
rank ≤ r elements X≤r.

(2) Show that G-equivariant closed subsets of an auxiliary space Y≤r, which contains
X≤r, satisfy the descending chain condition.

(3) Translate the above properties into the desired theorem.

We will explain (1) and (3) and skip most of (2). First, we need the notion of a flattening:
given a subset S ⊆ [n], set U =

⊗
i∈S Vi and U ′ =

⊗
i/∈S Vi. Then V = U ⊗ U ′, but now we

can identify it with the space of matrices. Given ω ∈ V, the corresponding matrix is called
a flattening of ω (it depends on S). If ω has rank r, then its flattening is a sum of r rank 1
matrices and hence has rank ≤ r.

Lemma 3.2. It suffices to prove Theorem 3.1 when dimVi = r + 1.

Proof. We claim that for any ω ∈ V, its rank is at most r if and only if for each set of linear
maps ϕi : Vi → kr, the rank of its image is also at most r. The “if” direction is clear: if ω
has rank ≤ r, then so are all of its images.

To prove the other direction, suppose that ω has rank ≥ r + 1. We show that for each i,
there exists a linear map ϕ : Vi → kr+1 such that the image of ω has rank ≥ r+ 1. Without
loss of generality, we may assume i = 1. We can reinterpret ω as a linear map

V ∗
2 ⊗ · · · ⊗ V ∗

n → V1,

and we let W be the image. If dimW ≤ r + 1, let kr+1 be any subspace of V1 containing
W and let ϕ : V1 → kr+1 be a projection. Then the image of ω has the same rank as ω.
Otherwise, if dimW > r + 1, let ϕ : V → kr+1 be any linear map such that ϕ maps W
surjectively onto kr+1. The flattening of the image of ω is then V ∗

2 ⊗ · · · ⊗ V ∗
n → kr+1 and

has rank r + 1, so the rank of the image of ω is ≥ r + 1. �

In particular, we may as well fix a single space V of dimension r+ 1 to replace all Vi. We
also fix a linear functional x0 ∈ V ∗ and use this to define maps

V ⊗(p+1) → V ⊗p

v1 ⊗ · · · ⊗ vp ⊗ vp+1 7→ x0(vp+1)v1 ⊗ · · · ⊗ vp.
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If ω ∈ V ⊗(p+1) has rank ≤ r, then so does its image in V ⊗p. Now set

V ⊗∞ := lim
←−
p

V ⊗p

and let X≤r be the inverse limit of the spaces of border rank ≤ r tensors.
The space V ⊗p carries an action of Σp by permuting tensor factors. It also has an action

of GL(V )p by linear change of coordinates. So the semidirect product Σp ⋉ GL(V )p acts.
We have inclusions Gp ⊂ Gp+1 compatible with the projection with respect to x0, so the
union

G∞ =
⋃

p

Gp

acts on V ⊗∞.
The space Y≤r is the inverse limit of the spaces of elements whose flattenings all have rank
≤ r. This certainly contains X≤r. Furthermore, it is defined by taking the determinants of
all (r + 1) × (r + 1) submatrices of all flattenings, which are in particular polynomials of
degree r+ 1. The spaces X≤r and Y≤r are both closed under the action of G∞. We skip the
rest of (2), which says that any infinite descending chain of closed G∞-subsets in Y≤r must
be eventually constant.

Note that G∞ also acts on the polynomial functions of all of the spaces involved.

Lemma 3.3. If Z ⊂ Y≤r is a closed G∞-subset, then it is the common solution set of finitely
many G∞-orbits of polynomials. In particular, it is defined by bounded degree polynomials.

Proof. If not, we can find an infinite sequence of polynomials f1, f2, . . . that all vanish on
Z, but such that Zi, the common solution set of G∞f1, . . . , G∞fi, satisfies Z1 % Z2 % · · · in
direct contradiction to (2). �

Taking Z = X≤r, we get that it is defined by bounded degree polynomials. To finish, pick
e0 ∈ V such that x0(e0) = 1. Define

τ : V ⊗p → V ⊗(p+1)

ω 7→ ω ⊗ e0.

Given ω ∈ V ⊗p, we can define ω∞ = ω ⊗ e⊗∞
0 ∈ V ⊗∞, and their ranks are the same. So

pulling back all of the equations vanishing on X≤r gives equations that define the border
rank ≤ r locus in V ⊗p.

3.2. Variants. A similar situation can be considered with both exterior and symmetric
powers of vector spaces instead of tensor powers. Given V , an element of

∧n V of the form
v1∧ · · ·∧ vn is said to have rank 1. Rank and border rank are defined similarly. For Symn V ,
elements of the form vn are said to have rank 1 (technically we should be working with the
divided power instead of the symmetric power). We note some theorems:

Theorem 3.4 (Draisma–Eggermont [DE]). For each r, there is a constant C(r) such that
the variety of border rank ≤ r anti-symmetric tensors is cut out by polynomials of degree
≤ C(r). The constant is independent of n and also V .

Theorem 3.5 (Sam [Sa]). Fix a field of characteristic 0. For each r, there is a constant C(r)
such that the full ideal of polynomials vanishing on the variety of border rank ≤ r symmetric
tensors is generated by polynomials of degree ≤ C(r). The constant is independent of n and
also V .
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The last theorem gives an ideal-theoretic statement which improves the set-theoretic state-
ment (though is limited by its restriction on characteristic).

4. Twisted commutative algebras

In this last part, we discuss some algebraic structures related to both of the examples
we have discussed. Let FB be the category whose objects are the finite sets [n] and whose
morphisms are bijective functions. A functor FB → Veck is the same as a sequence of Σn

representations over k. Given functors M,N : FB → Veck, we define their tensor product
by

(M ⊗N)(n) =
⊕

i+j=n

IndΣn

Σi×Σj
(Mi ⊗Nj).

This product is naturally associative, and we can define an isomorphism

τM,N : M ⊗N ∼= N ⊗M

as follows: for each i, j, there is an element τi,j ∈ Σi+j that conjugates (x, y) ∈ Σi × Σj to
(y, x) ∈ Σj × Σi. Applying these elements gives the desired isomorphism. The unit of the
product is the sequence of trivial representations.

In particular, one can define commutative algebra objects in the category of functors
FB → Veck, which we call twisted commutative algebras (tca’s). Concretely, this is a
functor A : FB→ Veck together with a map

A⊗ A→ A

which satisfies associativity and is invariant under the transpose map τA,A.
For an example, let V be a vector space and define AV (n) = V ⊗n. By Frobenius reciprocity,

an Σi+j-equivariant map

Ind
Σi+j

Σi×Σj
V ⊗i ⊗ V ⊗j → V ⊗(i+j)

is the same as the data of a Σi × Σj-equivariant map

V ⊗i ⊗ V ⊗j → V ⊗(i+j)

which we take as the canonical map.
One can also define modules over tca’s. Given a tca A, an A-module M is a functor

M : FB→ Veck together with a map

A⊗M →M

which satisfies associativity.
A moduleM over the tca Ak is a sequence of symmetric group representationsMn together

with maps

Ind
Σi+j

Σi×Σj
Mj →Mi+j.

This can be shown to be the same as an FI-module, so in fact, FI-modules are a special case
of modules over a tca.
The tca AV is an example of a finitely generated tca (in fact, it is generated in degree 1),

and following classical commutative algebra, one can ask if finitely generated modules over
finitely generated tca’s are noetherian. In general, this is unknown, but it is known for the
algebras AV .
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If k has characteristic 0, there is an alternative way to define tca’s which opens up the
possibility of using geometric intuition. The definition makes sense in general but will define
different algebraic structures in positive characteristic.

A polynomial functor is a functor F : Veck → Veck such that the maps on hom-sets

Homk(V,W )→ Homk(F (V ), F (W ))

are given by polynomial functions. We are ignoring certain issues of finiteness for simplicity.
An example are symmetric powers, exterior powers, tensor powers. These also have a product
given by

(F ⊗G)(V ) = F (V )⊗G(V )

together with natural isomorphisms F ⊗G ∼= G⊗ F . So again, we can define commutative
algebras and their modules. In characteristic 0, there is an equivalence between polynomial
functors and functors FB → Veck which is compatible with the products. The functor AV

becomes the polynomial functor W 7→ Sym(W ⊗ V ). This is closer to commutative algebra.
It turns out that if we take the colimit as dimW →∞, we get an algebra which remembers
the entire information of the functor, i.e., Sym(k∞ ⊗ V ), as long as remember the data of
the GL∞(k)-action. In particular, when considering what a set of elements generate, we are
allowed to use the GL∞(k) action.

The noetherianity question has several variants. Let A be a finitely generated algebra in
the category of polynomial functors.

• Are submodules of finitely generated A-modules also finitely generated?
• Are all ideals of A finitely generated?
• Are all ideals of A finitely generated up to radical?

Classically, a positive answer to the second question implies a positive answer to the first
question, but no such equivalence (or counterexample) is known in this setting. The last
question has a geometric reformulation. Recall that on a vector space over an algebraically
closed field, Hilbert’s nullstellensatz implies that closed subsets in the Zariski topology are
in bijective correspondence with radical ideals. So the last question is equivalent to asking
if the “prime spectrum” of A is a noetherian topological space. This is known to be true by
recent work of Draisma [Dr].
A particularly interesting example is when F is the symmetric algebra of a sum of sym-

metric powers:

F (V ) = Sym(Symd1(V )⊕ · · · ⊕ Symdr(V )).

In that case, points of Spec(F (V )) parametrize generating sets of ideals in Sym(V ) (with
degrees d1, . . . , dr) and we can consider a consider quotient “space” which is the set of ideals
which can be generated by elements of degrees d1, . . . , dr.

Let ν be a function that takes as input a homogeneous ideal in a polynomial ring and
returns a value in Z≥0 ∪ {∞}. Say it is an ideal invariant if it is unaffected by a linear
change of variables, and that it is cone-stable if it is also unaffected by adjoining a variable,
i.e., considering the ideal in a polynomial ring with one new variable. An example is the
projective dimension of an ideal. Finally, say that ν is degreewise bounded if it only takes on
finitely many values when restricted to ideals generated by polynomials of a fixed sequence
of degrees (but is independent of the number of variables). The following was shown by
Ananyan–Hochster:

Theorem 4.1 (Ananyan–Hochster). Projective dimension is degreewise bounded.
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Projective dimension has one more property: it is upper semicontinuous in flat families.
Using Draisma’s theorem and the previous theorem, one can show the following:

Theorem 4.2 (Erman–Sam–Snowden). If ν is a cone-stable invariant which is upper semi-
continuous in flat families, then ν is degreewise bounded.

The idea is to use Ananyan–Hochster to build a flattening stratification for the universal
family on Symd1(k∞) ⊕ · · · ⊕ Symdr(k∞) (the space parametrizing tuples of polynomials)
which shows that the loci where ν jumps gives a decreasing chain of GL-stable Zariski
closed subsets.
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