
USING REPRESENTATION THEORY TO CALCULATE SYZYGIES

STEVEN V SAM

Abstract. These are lecture notes for the workshop “Syzygies of algebraic varieties” that
took place November 20–22, 2015 at University of Illinois, Chicago.

The goal of these lectures is to explain the method of Kempf collapsing and how to use it
to calculate Betti numbers of algebraic varieties. This technique can only be fully executed in
very special cases, but when it does work, it gives a surprisingly large amount of information.
We will motivate this technique through the example of determinantal varieties. At the end
we will indicate some other examples where it can be used, and possible research directions.

1. Preliminaries

(1.1) Given a homogeneous ideal I in a polynomial ring A = k[x1, . . . , xn] (k a field), we
have the Betti numbers

βi,j(I) = dimk Tor
A
i (A/I,k)j.

Recall that if F• is a minimal free resolution of A/I, then Fi
∼= A(−j)⊕βi,j(I) where A(−j)

denotes the graded free A-module whose generator is in degree j.

(1.2) A polynomial representation of GLn(k) is a homomorphism ρ : GLn(k) → GL(V )
where V is a k-vector space, and the entries of ρ can be expressed in terms of polynomials
(as soon as we pick a basis for V ).
A simple example is the identity map ρ : GLn(k) → GLn(k). Slightly more sophisticated

is ρ : GL2(k) → GL(Sym2(k2)) where Sym2(k2) is the space of degree 2 polynomials in x, y
(which is a basis for k2). The homomorphism can be defined by linear change of coordinates,
i.e.,

ρ(g)(ax2 + bxy + cy2) = a(gx)2 + b(gx)(gy) + c(gy)2.

If we pick the basis x2, xy, y2 for Sym2(k2), this can be written in coordinates as

GL2(k) → GL3(k)

(

g1,1 g1,2
g2,1 g2,2

)

7→





g21,1 g1,1g1,2 g21,2
2g1,1g2,1 g1,1g2,2 + g1,2g2,1 2g1,2g2,2
g22,1 g2,1g2,2 g22,2



 .(1.2.1)

More generally, we can define ρ : GLn(k) → GL(Symd(kn)) for any n, d. Another impor-
tant example uses exterior powers instead of symmetric powers, so we have ρ : GLn(k) →
GL(∧d(kn)).

A subrepresentation of V is a subspace W such that ρ(g)w ∈ W for all g ∈ GLn(k) and
w ∈ W .

Sometimes it will be less confusing to go basis-free and write GL(E) in place of GLn(k)
(here E ∼= kn). We will be interested in products GL(E)×GL(F ).
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Since we may need it, a rational representation is like a polynomial representation if
you replace “polynomials” with “rational functions”. In fact, the denominator of the entries
of ρ(g) will always be a power of the determinant of g.

(1.3) We will be interested in polynomial representations ρ : G → GL(A) where A is a
polynomial ring and G is either GL(E) or GL(E)×GL(F ). In this case, we’ll also require
that it preserve the graded components of A and respects multiplication, i.e., ρ(g)(vw) =
(ρ(g)(v)) · (ρ(g)(w)). This will be automatic if A = Sym(V ) (we use Sym(V ) to denote the
symmetric algebra

⊕

d≥0 Sym
d(V )) for a polynomial representation V of G.

We’ll also consider homogeneous ideals I ⊂ A which are subrepresentations. Then there
is an induced action of G on A/I, and by functoriality, G also acts on TorAi (A/I,k)j. The
βi,j records the dimension of this representation, but can instead ask about the structure of
this representation.

2. Determinantal ideals

(2.1) Pick vector spaces E and F . Let A = Sym(E⊗F ), the symmetric algebra on E⊗F .
If x1, . . . , xn is a basis for E and y1, . . . , ym is a basis for F , we can think of A = k[ϕi,j] where
ϕi,j = xi ⊗ yj. Note that there is a homomorphism ρ : GL(E) ×GL(F ) → GL(E ⊗ F ) so
also ρ : GL(E)×GL(F ) → GL(A).

So A can be thought of as polynomial functions on the space M of n × m matrices. In
basis-free terms, we can think of them as functions on E∗ ⊗ F ∗. This is the space of linear
maps from E to F ∗. The generic matrix Φ has entries ϕi,j. Pick 1 ≤ r ≤ min(m,n). Let
Ir be the ideal generated by the determinants of all r × r submatrices of Φ. Then Ir is a
subrepresentation of A (check!).

Our goal is to present a method to calculate TorAi (A/Ir,k)j when k has characteristic 0.
This will generalize to some other settings.

(2.2) The vanishing locus of Ir in the space of n×m matrices is the set of matrices whose
rank is < r. Denote this M<r. This is the determinantal variety. It is true that Ir is
actually a prime ideal, though we won’t say much more about that right now. It will follow
from the technique we present (though there are many ways to prove that).

(2.3) Recall that given a vector space V and 1 ≤ d ≤ dimV , the GrassmannianGr(d, V ) is a
projective variety whose points (for simplicity, assume k is algebraically closed) parametrize
d-dimensional subspaces W ⊂ V . The trivial vector bundle is V = V ×Gr(d, V ) and it has a
tautological subbundle R = {(v,W ) | v ∈ W}. This is a rank d vector bundle over Gr(d, V ).
The quotient bundle Q = V/R is a rank dimV − d vector bundle on Gr(d, V ).

(2.4) Consider the Grassmannian Gr(r − 1, F ∗). We can build the vector bundle E∗ ⊗ R.
The points of this vector bundle parametrize pairs (W,ϕ) of a choice of (r − 1)-dimensional
subspace W ⊂ F ∗ and a linear map ϕ : E → W . But E∗ ⊗ R ⊂ E∗ ⊗ V and E∗ ⊗ V has a
natural projection to E∗ ⊗ F ∗. The composition E∗ ⊗ R → E∗ ⊗ F ∗ sends (ϕ,W ) to the

linear map which is the composition E
ϕ
−→ W ⊂ F ∗.

In particular, the image consists of all linear maps which factor through an r−1-dimensional
subspace which is the set of rank < r matrices, i.e., M<r.

(2.5) Here is an alternative perspective on the last paragraph. Consider the Grassmannian
Gr(n− r+1, E). We can build the vector bundle Q∗ ⊗F ∗. The points of this vector bundle
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parametrize pairs (W,ϕ) of a choice of (n− r+1)-dimensional subspace W ⊂ E and a linear
map ϕ : E/W → F ∗. But Q∗ ⊗ F ∗ ⊂ V∗ ⊗ F ∗ and V∗ ⊗ F ∗ has a natural projection to
E∗ ⊗ F ∗. The composition Q∗ ⊗ F ∗ → E∗ ⊗ F ∗ sends (ϕ,W ) to the linear map which is the

composition E → E/W
ϕ
−→ F ∗.

Again, the image in E∗⊗F ∗ consists of all linear maps which have a n−r+1-dimensional
subspace in its kernel. This is the set of rank < r matrices, i.e., M<r.

3. The “geometric technique” / Kempf collapsing

(3.1) We’ll abstract the previous setting. Let X be an irreducible projective variety over k
and let A = Sym(V ) for some vector space V , so V is the space of linear functions on V ∗.
Let E = V ∗ ×X be the trivial bundle on X. Let S ⊂ E be a subbundle and let Y ⊂ V ∗ be
the (reduced) image of S under the composition S ⊂ E → V ∗; call this composition π. This
situation is sometimes called a Kempf collapsing, or maybe Y is the Kempf collapsing of
S. Here’s a diagram:

S
�

�

//

π

��

E = V ∗ ×X

π1

��

Y �

�

// V ∗

Note that Y is irreducible because the total space of S is irreducible. Let IY ⊂ A be the
prime ideal of Y .

Some more notation (mostly to match [W2, §5], though we have switched the meaning of
X and V ): η = S∗ and ξ = (E/S)∗. Here’s the main tool:

Theorem. There is a minimal complex F• of graded free A-modules such that:

Fi =
⊕

j≥0

Hj(X;

i+j
∧

ξ)⊗k A(−i− j),

Hi(F•) =

{

0 if i > 0

H−i(X; Sym(η)) if i ≤ 0
.

Here Hj(X;−) denotes (Zariski) sheaf cohomology.

Remark. Hj(X; Sym(η)) can be identified with Rjπ∗OS where Rjπ∗ are the derived functors
of the pushforward along π, and OS is the structure sheaf of the total space of S.

(3.2) In the case we’ll deal with, Hj(X; Sym(η)) = 0 for j > 0. If we can compute the
Fi above, then this will follow by showing that Fi = 0 for i < 0. Also, if π is birational,
then H0(X; Sym(η)) is the normalization (integral closure) of A/IY . If Fi = 0 for i < 0 and
F0 = A, then A/IY is normal (integrally closed). For the determinantal variety, it will turn
out that A/IY is normal.
If π is birational, Rjπ∗OS = 0 for j > 0, and π∗OS = OY , then we will say that Y has

rational singularities (in positive characteristic, one usually asks for more, but this suffices
for our purposes).
In any case, if Rjπ∗OS = 0 for j > 0 and π∗OS = OY , then we have

TorAi (A/IY ,k)j = Hj−i(X;

j
∧

ξ).
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(3.3) Let’s summarize what happens for the determinantal variety using the setup in (2.4):

• X = Gr(r − 1, F ∗)
• S = E∗ ⊗ R

• η = E ⊗ R∗

• ξ = E ⊗ Q∗

So we need to calculate the sheaf cohomology of
∧d(E⊗Q∗) for all d. We will see how to do

this in characteristic 0 in the next section, but there is one case that can already be done.
Recall that n = dimE and m = dimF . If n ≥ m = r, then X ∼= Pm−1 and Q∗ ∼= O(−1), so
∧d(E ⊗ Q∗) ∼=

∧d E ⊗ O(−d). Note that

Hj(Pm−1;
d
∧

E ⊗ O(−d)) =
d
∧

E ⊗ Hj(Pm−1;O(−d)).

If we don’t use these non-canonical isomorphisms, we can write everything in a basis-free
way and will eventually be led to the Eagon–Northcott complex. This approach was first
used by Kempf [K] and is one of the exercises.

(3.4) Remark. We haven’t said anything about how to describe the differentials in the
complex F•. In some cases, one can use representation theory to determine these differentials
(because subject to being equivariant maps, they are sometimes unique up to scalar multiple).
This is a more delicate issue in general.

4. Representation theory

In this section, k is a field of characteristic 0.

(4.1) Classification of rational representations. Given two rational representations ρi : GLn(k) →
GL(Vi) (i = 1, 2), the direct sum is ρ : GLn(k) → GL(V1 ⊕ V2) which in coordinates looks
like

ρ(g) =

(

ρ1(g) 0
0 ρ2(g)

)

.

Finally, given ρi : GLn(k) → GL(Vi) (i = 1, 2), they are isomorphic if there is an isomor-
phism f : V1 → V2 such that ρ2(g) = fρ1(g)f

−1 for all g ∈ GLn(k).
If k is a field of characteristic 0, then we can classify rational representations of GLn(k).

To do this, let λ = (λ1, . . . , λn) ∈ Zn such that λ1 ≥ · · · ≥ λn (if λn ≥ 0, this is an
integer partition). Then there is a construction called the Schur functor Sλ and we have
a representation ρλ : GLn(k) → GL(Sλ(k

n)). We will not go into the details here.
The basic result is as follows:

Theorem. Every finite-dimensional rational representation V of GLn(k) is isomorphic to

the direct sum
⊕

λ Sλ(k
n)⊕mλ(V ) for some mλ(V ) ≥ 0. And V ∼= W if and only if mλ(V ) =

mλ(W ) for all λ.

The classification of rational representations of GL(E) × GL(F ) is similar, but we now
have a direct sum of the terms Sλ(E)⊗ Sµ(F ) where λ and µ are of the appropriate length.

Remark. For a reference on Schur functors, see [FH, Chapter 6]. They are also treated in
[W2, Chapter 2], but a warning on notation: Weyman defines Schur functors Lλ and Weyl
functors Kλ which are in general different, but coincide in characteristic 0. However, the
isomorphism is Sλ

∼= Kλ
∼= Lλ† where λ† is the transpose partition defined in (4.3).
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(4.2) Some properties. It may be helpful to know that Sλ(k
n) = Symd(kn) when λ =

(d, 0, 0, . . . , 0) and is ∧d(kn) when λ = (1, 1, . . . , 1, 0, . . . , 0) (d 0’s). Also, (kn)∗ is corresponds
to λ = (0, 0, . . . , 0,−1). More generally, Sλ(k

n)∗ ∼= Sµ(k
n) where µ = (−λn, . . . ,−λ1).

Also, given any representation ρ, we can twist it by g 7→ ρ(g) det(g)d for any d ∈ Z. If ρ
comes from Sλ, then the new representation is Sµ where µ = (λ1 + d, . . . , λn + d).
Although not strictly needed in this presentation, it is useful to know what the dimension

of the vector space Sλ(k
n) is. There are several different formulas, but we’ll just give one:

dimk Sλ(k
n) =

∏

1≤i<j≤n

λi − λj + j − i

j − i
.

See [FH, Theorem 6.3]. It’s not easy to tell from this formula, but if you fix λ and vary n,
the dimension is a polynomial in n of degree |λ| (if λ has nonnegative entries).

(4.3) Cauchy identity. The tensor product E⊗F is a polynomial representation of GL(E)×

GL(F ), as is Symd(E ⊗ F ) and
∧d(E ⊗ F ). So we can decompose them as a sum of

Sλ(E)⊗ Sµ(E). To describe this, we need some notation. First, |λ| =
∑

i λi and ℓ(λ) is the
number of nonzero entries of λ. We will identify λ and (λ, 0, . . . , 0), i.e., trailing zeros may
be ignored.

λ† is the transpose partition of λ, i.e., λ†
j = #{i | λi ≥ j}. For example, if λ = (5, 3, 2),

then λ† = (3, 3, 2, 1, 1). In pictures:

λ = , λ† = .

We will make the following convenient convention: if ℓ(λ) > dimE, then Sλ(E) = 0. Oth-
erwise we get some nonzero polynomial representation of GL(E). Same with F . Then the
Cauchy identities are as follows:

Symd(E ⊗ F ) =
⊕

λ
|λ|=d

Sλ(E)⊗ Sλ(F ),

d
∧

(E ⊗ F ) =
⊕

λ
|λ=d

Sλ(E)⊗ Sλ†(F ).

See [W2, Corollary 2.3.3].

Remark. The definition of Sλ can be extended to vector bundles, and the decomposition
above makes sense if E and F are arbitrary vector bundles (as long as everything is over a
field of characteristic 0). So we will apply this when F is replaced by the vector bundle Q∗.
So we need to know how to calculate the cohomology of SλQ

∗; this is the next section.

(4.4) Borel–Weil–Bott theorem. Let Σm denote the symmetric group on m letters, more
precisely the group of bijections of [m] = {1, . . . ,m}. Given σ ∈ Σm, define its length to be

ℓ(σ) = #{(i, j) | 1 ≤ i < j ≤ m, σ(i) > σ(j)}.

Also define
ρ = (m− 1,m− 2, . . . , 1, 0) ∈ Zm.
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Given v ∈ Zm, define σ(v) = (vσ−1(1), . . . , vσ−1(m)) and σ • v = σ(v + ρ)− ρ. Note that given
any v ∈ Zm, either there exists σ 6= 1 such that σ • v = v, or there exists a unique σ such
that σ • v is weakly decreasing.

Now we are ready to calculate sheaf cohomology on Gr(d,km). Let α = (α1, . . . , αd) ∈ Zd

and β = (β1, . . . , βm−d) ∈ Zm−d be weakly decreasing and set v = (α1, . . . , αd, β1, . . . , βm−d).

Theorem (Borel–Weil–Bott). Exactly one of the following two cases happens:

(a) If there exists σ 6= 1 such that σ • v = v, then Hj(Gr(d,km);Sα(R
∗) ⊗ Sβ(Q

∗)) = 0 for

all j.
(b) Otherwise, there exists unique σ such that γ = σ • v is weakly decreasing, and

Hj(Gr(d,km);Sα(R
∗)⊗ Sβ(Q

∗)) =

{

Sγ(k
m)∗ if j = ℓ(σ)

0 if j 6= ℓ(σ)
.

The equality denotes that the two terms are isomorphic as GLm(k)-representations.

See [W2, Corollary 4.1.9].
In our application to determinantal varieties, we will take α = 0.

Example. Take m = 4 and d = 2 and we want to calculate the cohomology of Sym2(R∗) ⊗
Sym2(Q∗). Then v = (2, 0, 2, 0). If σ is the transposition that switches 2 and 3, then
σ • v = (2, 1, 1, 0) and ℓ(σ) = 1. So

H1(Gr(2,k4), Sym2(Q∗)⊗ Sym2(R∗)) = S2,1,1(k
4)∗

and all other cohomology vanishes.

(4.5) Here are a few notes on σ• and ℓ(σ).
First, let si ∈ Σm be the transposition that swaps i and i + 1. Then ℓ(si) = 1, and ℓ(σ)

can also be defined to be the minimum j such that σ is a product of j of the si. Furthermore,
si • v has the following effect: (. . . , vi, vi+1, . . . ) 7→ (. . . , vi+1 − 1, vi + 1, . . . ).

So to apply the Borel–Weil–Bott theorem, we can work as follows. First, if v + ρ has a
repeated entry, then we can find σ 6= 1 such that σ • v = v. Otherwise, pick i such that
vi < vi+1 (in fact, we will have vi < vi+1+1). Now apply si• to get (. . . , vi+1− 1, vi+1, . . . ).
Note that vi+1− 1 ≥ vi+1. Repeatedly do this until v becomes sorted and take the product
of all si to get σ such that σ • v is weakly decreasing. The number of steps is ℓ(σ).

Example. Take v = (0, 0, 3, 0, 2). Apply s2• to get (0, 2, 1, 0, 2). Now apply s1 to get
(1, 1, 1, 0, 2). Now apply s4 to get (1, 1, 1, 1, 1). So σ = s4s1s2 and ℓ(σ) = 3.

(4.6) In principle, we have everything that we need to calculate the Betti numbers of de-
terminantal varieties (in characteristic 0). But this involves some dexterious use of the
combinatorics of •. It can be pulled off, and the final answer can be stated in a nice way,
but we don’t have time in this lecture to do it. See [W2, §6.1] for a treatment. The original
paper is by Lascoux [L].

5. Exercises

Quick:

(1) Verify (1.2.1).
(2) From (2.1): check that Ir is a subrepresentation of Sym(E ⊗ F ).
(3) Check that the map E∗ ⊗ R → M<r in (2.4) is birational.
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(4) Show that the affine cone of any embedded projective variety X ⊂ Pn is the Kempf
collapsing of S = OX(−1) on X; in fact, the Kempf collapsing is birational.

(5) Calculate the sheaf cohomology of R∗ ⊗ S3,1Q
∗ and S3,1Q

∗ on Gr(2,k4).

Medium:

(6) Let V be the space of n × n symmetric matrices. For each r ≤ n, realize the rank < r
symmetric matrices as a Kempf collapsing where X is a Grassmannian. Do the same for
skew-symmetric matrices. (The rank of a skew-symmetric matrix is always even, though
this won’t exactly be relevant.)

(7) Let V be a vector space over an algebraically closed field with subspace L ⊂ V . The
Kalman variety is the locus of matrices in End(V ) which have an eigenvector in L.
Realize it as a Kempf collapsing over the projective space of L.

(8) The partial flag variety generalizes the Grassmannian. Let V be a vector space of dimen-
sion m and pick 0 < d1 < d2 < · · · < dr < m. The partial flag variety Fl(d1, . . . , dr;V ) is
a projective variety whose points parametrize increasing sequences of subspaces (flags)
W1 ⊂ W2 ⊂ · · · ⊂ Wr ⊂ V where dimWi = di. It also has a tautological subbundles
Ri ⊂ V × Fl(d1, . . . , dr;V ) defined by Ri = {(v,W1 ⊂ · · · ⊂ Wr) | v ∈ Wi}.
Given d ≥ 1, let Jd be the d× d Jordan matrix with 1’s on the superdiagonal and 0’s

everywhere else (set J0 = 0) Given a partition λ with |λ| = n, let Jλ = Jλ1
⊕ · · · ⊕ Jλn

.
The Jordan normal form of a nilpotent n× n matrix must be Jλ for some λ. Let Xλ be
the Zariski closure of the locus of n× n nilpotent matrices whose Jordan canonical form
is Jλ. Realize Xλ as a Kempf collapsing over a partial flag variety. (Generalizations of
Borel–Weil–Bott to partial flag varieties can be found in [W2, §4.1].)

More substantial:

(9) Assume n ≥ m. Calculate TorAi (A/In,k) using the setup in (2.4). First, just calculate
F•; you should get Fi = 0 for i < 0 and F0 = A. Note that Gr(m− 1, F ∗) ∼= P(F ) and
that Q ∼= O(1), so ξ ∼= E⊗O(−1). So you don’t need to use Borel–Weil–Bott here, since
you’re just calculating the cohomology of line bundles on projective space.
The complex F• is the Eagon–Northcott complex. (For a quicker exercise, assume

n = m+ 1, in which case you get the Hilbert–Burch complex.)
(10) Take m = n and calculate TorAi (A/In−1,k). F• is the Gulliksen–Negard complex.

6. Further notes and research directions

(6.1) Further reading. If you want to know more about the technique listed here, the
first place to look is probably [W2, §§6.1, 6.3, 6.4] for the calculation of Betti numbers of
determinantal varieties in spaces of generic, symmetric, and skew-symmetric matrices. To
fill in background, one might want to learn more about Schur functors, either from [FH,
Chapter 6] or [W2, Chapter 2]. Further examples are illustrated in [W2, Chapters 7,8,9].
We mention some below and some other things not in that book.

The technique tends to be most useful for calculating the Betti numbers of ideals of
varieties that have some kind of linear-algebraic flavor.

(6.2) The Kempf collapsing in Exercise 4 can be used to calculate the Betti numbers of the
affine cone of X if it has rational singularities. This happens for special classes of varieties,
like Plücker embeddings of Grassmannians and Veronese embeddings of projective spaces
(more generally, the orbit of highest weight vectors in any irreducible representation of a
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reductive group). Unfortunately, the calculation of the sheaf cohomology of
∧d ξ tends to

be intractable.
Rather than ask for a complete calculation, one could instead ask about when Betti num-

bers are 0 or nonzero, in which case it could be possible to make some progress. This would
already be very interesting for the Plücker embedding of Gr(3,km) and the third Veronese
embedding of Pm. Note that for Gr(2,km) and the second Veronese embedding, this re-
duces to a question about low-rank skew-symmetric or symmetric matrices, and the problem
has been solved completely in characteristic 0, see [W2, §§6.3, 6.4]. Similarly, one can ask
about the Segre embedding of a product of three projective spaces (which generalizes the
setting with matrices). Both the Segre and Veronese cases are toric, so can be studied with
combinatorial methods, see the next item for references.

(6.3) The Borel–Weil–Bott theorem is generally false in positive characteristic, though there
are some special cases that remain true (for example, the cohomology of line bundles on
projective space). So one might expect the Betti numbers of Ir to depend on characteristic.
In fact, if n ≥ m and r ≤ m − 2, they do not depend on characteristic. For r = m, this is
the Eagon–Northcott complex, for r = m− 1, see [ABW], for r = m− 2, see [H2]. However,
for r < m− 2, they do depend on characteristic, see [H1]. The smallest example is the ideal
I2 in the space of 5× 5 matrices. You can see this directly using Macaulay2 [M2] nowadays:
β3,5(I2) = 0 in characteristic 0, but β3,5(I2) = 1 in characteristic 3.
For r = m − 1, an explicit construction is given for the complex in [ABW], in fact when

k is replaced by Z, but I don’t think that an explicit construction is known for r = m − 2.
To give the most uniform description, one would construct it with k replaced by Z.
So it largely remains open to understand the behavior of these Betti numbers in positive

characteristic, though probably intractable in general. One special case worth mentioning
is r = 2. In this case, I2 is a toric ideal, i.e., it is generated by binomials. One can use
combinatorial techniques (simplicial complexes) to study Betti numbers of toric ideals. See
[RR, SW] for a start in this direction. For keywords: chessboard complexes are related to I2
and matching complexes are related to I2 in the space of symmetric matrices.

(6.4) The Betti numbers of nilpotent orbit closures Xλ (defined in Exercise 8) are, for the
most part, unknown. Generators for the prime ideal of Xλ were obtained in characteristic
0 by Weyman in [W1] using the geometric technique, but it seems that additional ideas
are needed to understand the Betti numbers. Each Xλ has rational singularities, so the
obstruction mostly lies in the calculation of the cohomology of

∧d ξ. Some more information
can be found in [W2, Chapter 8].

(6.5) Over a field of characteristic 0, the Cauchy identity (4.3) shows that

A = Sym(E ⊗ F ) =
⊕

λ

Sλ(E)⊗ Sλ(F )

where the sum is over all partitions λ with at most min(dimE, dimF ) parts. Let Iλ
be the ideal generated by the subspace Sλ(E) ⊗ Sλ(F ); then Iλ is a GL(E) × GL(F )-
subrepresentation of A. A basic fact is that Iλ contains Sµ(E)⊗ Sµ(F ) if and only if λ ⊆ µ,
i.e., λi ≤ µi for all i (for this, and other fundamental properties about these ideals, see
[dCEP]).

When λ = (1, . . . , 1) (r 1’s), Iλ is the ideal generated by the determinants of all r × r
submatrices, which we discussed and one can combine all of the techniques that we discussed
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to get the Betti numbers. There is a lot of interesting representation theory hidden in the
background which could be uncovered by calculating the Betti numbers of Iλ in general, but
this is largely unknown. A notable exception is when λ is a rectangle, i.e., λ = (k, k, . . . , k)
for some k. In this case, the Betti numbers are worked out in [RW].

(6.6) The Betti numbers of the Kalman variety (defined in Exercise 7) were calculated in [S]
when dimL ≤ 3. A natural direction is to understand the general case. The main obstacle
is that the Kalman variety is not a normal variety, so more needs to be done than just apply
the geometric technique. An outline of an approach is given by [S, Conjecture 3.1].
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