"Gröbner bases for twisted commutative algebras" University of Michigan combinatorics seminar, April 4, 2014 Steven Sam (joint with Andrew Snowden)

1. Introduction: some motivating results

General theme: "Finding finiteness in new places" (Sample results:)

Theorem 1.1 (Church–Ellenberg–Farb–Nagpal). Let X be a compact connected orientable manifold. Define $C_n(X) = \{(p_1, \ldots, p_n) \in X^n \mid p_i \neq p_j\}$. For any $i \geq 0$ and field \mathbf{k} , the function

$$n \mapsto \dim_{\mathbf{k}} \mathrm{H}^i(C_n(M); \mathbf{k})$$

agrees with a polynomial for $n \gg 0$. (Will realize as Hilbert polynomial.)

(Applications of comm. alg. ideas to other areas of math)

2. FI-MODULES

(To explain, need some formalism.)

Define category FI_d :

- objects are finite sets
- morphism $S \to T$ is an injection $f: S \to T$ and a function $T \setminus f(S) \to \{1, \dots, d\}$.

Definition 2.1. FI_d -module M is a functor FI_d to k-vector spaces. This is an Abelian category (so usual notions of algebra make sense)

Morphism $\varphi: S \to T$ gives linear map $M(\varphi): M(S) \to M(T)$. M is **finitely generated** if there are $m_1 \in M(S_1), \ldots, m_r \in M(S_r)$ so that every element is

$$c_1 M(\varphi_1)(m_1) + \dots + c_r M(\varphi_r)(m_r)$$
 $(c_i \in \mathbf{k})$

Hilbert function of M is $h_M(n) := \dim_{\mathbf{k}} M(\{1, ..., n\})$.

(Note that $\dim_{\mathbf{k}} M(S) = \dim_{\mathbf{k}} M(S')$ whenever |S| = |S'|)

Proposition 2.2. For d = 1, if M is f.g., then $h_M(n)$ is a polynomial function for $n \gg 0$.

Example 2.3. S finite set, define $C_S(X)$ to be space of injective maps $S \to X$. Given $S \subseteq T$, get forgetful map $C_T(X) \to C_S(X)$ and hence $H^i(C_S(X);\mathbf{k}) \to H^i(C_T(X);\mathbf{k})$ which forms FI_1 -module. Note $C_S(X) \cong C_{|S|}(X)$. (Is it f.g.?)

Definition 2.4. Submodule $N \subseteq M$ is collection $N(S) \subseteq M(S)$ closed under all $M(\varphi)$.

To approach conf. space, can use spectral sequence for inclusion $C_n(X) \subset X^n$. The E_2 page was described by Totaro and has structure of f.g. FI_1 -modules. Going to E_{∞} page requires taking submodules and quotient modules.

Question: If M is f.g. FI_d -module, is the same true for $N \subseteq M$? Yes. (S.–Snowden; CEFN for d = 1)

For each n, define FI_d -module P_n by $P_n(S) = \mathbf{k}[\operatorname{Hom}_{FI_d}(\{1,\ldots,n\},S)]$.

Lemma 2.5. Being f.g. is equivalent to being a quotient of a finite direct sum $P_{n_1} \oplus \cdots \oplus P_{n_r}$.

(So just need to answer question for the modules P_n)

Note that $h_{P_r}(n) = \binom{n}{r} r! = n(n-1) \cdots (n-r+1)$.

3. Gröbner methods

Idea: monomials easier than polynomials. (Usual reduction is taking initial terms) Want to use leading terms of elements in FI_d . One desirable property:

(*) if
$$f < f'$$
 (morphisms) then $gf < gf'$ for all morphisms g

But consider $f, f': [2] \to [3]$ with f(1) = 1, f(2) = 2 and f'(1) = 2, f'(2) = 1 and $g, g': [3] \to [4]$ with g(1) = 1, g(2) = 2, g(3) = 3 and g'(1) = 2, g'(2) = 1, g'(3) = 3. Then gf = g'f' and g'f = gf' so both f > f' and f' > f leads to a contradiction.

Fix: Remove the symmetric group actions.

Define category OI_d :

- objects are ordered finite sets
- morphism $S \to T$ is increasing injection $f: S \to T$ and function $T \setminus f(S) \to [d]$.

Define OI_d -modules, submodules, f.g. modules in same way. P_n are replaced by Q_n : $Q_n(S) = \mathbf{k}[\text{Hom}_{OI_d}(\{1,\ldots,n\},S)].$

Have forgetful functor $\Phi: OI_d \to FI_d$

So given FI_d -module M, have pullback $\Phi^*(M)$ which is an OI_d -module.

 Φ^* is exact, so $M \subseteq N$ implies $\Phi^*(M) \subseteq \Phi^*(N)$.

Proposition 3.1. *M* is f.g. FI_d -module if and only if $\Phi^*(M)$ is a f.g. OI_d -module.

Proof. M f.g. implies *M* is quotient of $P_{n_1} \oplus \cdots \oplus P_{n_r}$.

So $\Phi^*(M)$ is quotient of $\Phi^*(P_{n_1}) \oplus \cdots \oplus \Phi^*(P_{n_r})$. Now use that $\Phi^*(P_n) \cong Q_n^{\oplus n!}$.

Other direction: FI_d has more operators than OI_d .

(So it suffices to prove Q_n are Noetherian)

Definition 3.2. A **monomial** in Q_n is basis vector given by morphism $[n] \rightarrow S$.

 OI_d -morphism $\{1,...,n\} \rightarrow \{1,...,r\}$ is identified with word in $\{*,1,...,d\}$ of length r where * appears n times.

Monomial submodule of Q_n is one generated by monomials.

Proposition 3.3. Monomial submodules of Q_n are f.g.

Proof. Submodule in Q_n generated by word w (basis element) is all other words that contain w as a subword. Get partial order on words: **Higman's lemma** implies there are no infinite antichains. For any monomial submodule, build sequence of monomials x_1, x_2, \ldots where x_i is minimal degree such that it is not generated by x_1, \ldots, x_{i-1} . This must be finite!

Ordering words lexicographically gives total ordering with crucial property (*) and allows us to define initial terms

 $in_{<}(f) = \max\{m \mid m \text{ monomial with nonzero coeff in } f\}.$

and initial submodules

$$in_{<}(M) = \mathbf{k}\{in_{<}(f) \mid f \in M\}.$$

Standard arguments imply submodule *N* f.g. iff its initial submodule is f.g.:

Lemma 3.4. If $N \subseteq M$ and $in_{<}(N) = in_{<}(M)$, then N = M.

Proof. If not, pick $f \in M \setminus N$ with $in_{<}(f)$ minimal. There exists $g \in N$ with $in_{<}(g) = in_{<}(f)$. Then $f - g \in M \setminus N$ and has smaller initial term.

Other uses of Gröbner methods:

- Dotsenko-Khoroshkin: shuffle operads
- Aschenbrenner-Hillar, Hillar-Sullivant: monoidal equivariant ideals in poly. rings

4. Further directions

- Analogy with commutative algebra further developed in S.—Snowden, "GL-equivariant modules over polynomial rings in infinitely many variables", arXiv:1206.2233.
- Can generalize by replacing FI by linear version $VI(\mathbf{F}_q)$ or even VI(R) applications to cohomology of congruence subgroups of arithmetic groups, mapping class groups, etc.
- What is behavior of Hilbert function of f.g. FI_d -modules? Know that it is bounded by $p(n)d^n$ for polynomial p. Examples of FI_d -modules? one example: configuration spaces of disconnected manifolds (with d components).

Other approximate candidates: cohomology of (Fulton–MacPherson) compactifications of conf. spaces; cohomology of Deligne–Mumford compactification of $\mathcal{M}_{g,n}$

- Define category $FI^{(2)}$:
 - Objects are finite sets
 - morphism $S \to T$ is an injection $f: S \to T$ and a perfect matching on $T \setminus f(S)$. Do $FI^{(2)}$ -modules have Noetherian property? This fails for $OI^{(2)}$ -modules! When $\mathbf{Q} \subseteq \mathbf{k}$, $FI^{(2)}$ -modules is a model for $\mathbf{O}(\infty)$ -modules where $\mathbf{O}(\infty) = \bigcup_n \mathbf{O}(n)$.
- Use Kruskal tree theorem? (Homeomorphic embeddings of labeled rooted trees)
- Can use category of surjections to prove Δ -modules (in the sense of Snowden) are Noetherian (strengthens his previous results).