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1. INTRODUCTION: SOME MOTIVATING RESULTS

General theme: “Finding finiteness in new places”
(Sample results:)

Theorem 1.1 (Church—Ellenberg—Farb—Nagpal). Let X be a compact connected orientable
manifold. Define C,(X)={(p1,...,pn) €X" | p; # p;}. For any i =0 and field k, the function

n— dimy H(C,(M); k)
agrees with a polynomial for n > 0. (Will realize as Hilbert polynomial.)

(Applications of comm. alg. ideas to other areas of math)

2. FI-MODULES

(To explain, need some formalism.)
Define category F1,:
e objects are finite sets
¢ morphism S — T is an injection f: S — T and a function 7'\ f(S) — {1,...,d}.

Definition 2.1. FI;-module M is a functor F1; to k-vector spaces. This is an Abelian
category (so usual notions of algebra make sense)

Morphism ¢: S — T gives linear map M(p): M(S) — M(T). M is finitely generated if
there are m1 € M(S1),...,m, € M(S,) so that every element is

c1M(p1)myp)+---+c, M(p;)m;) (ci ek)

Hilbert function of M is hy;(n) := dimx M({1,...,n}).
(Note that dimg M (S) = dimy M(S’) whenever |S| =|S’|) U

Proposition 2.2. For d =1, if M is f.g., then hy(n) is a polynomial function for n > 0.

Example 2.3. S finite set, define Cs(X) to be space of injective maps S — X. Given Sc< T,
get forgetful map Cr(X) — Cg(X) and hence H(Cs(X); k) — H(C7(X);Kk) which forms FI;-
module. Note Cg(X) = C5|(X). (Isit £.g.?) U

Definition 2.4. Submodule N < M is collection N(S) < M(S) closed under all M(¢p). U

To approach conf. space, can use spectral sequence for inclusion C,(X) c X". The E9 page
was described by Totaro and has structure of f.g. FI;-modules. Going to E, page requires
taking submodules and quotient modules.

Question: If M is f.g. FI;-module, is the same true for N € M?
Yes. (S.—Snowden; CEFN for d = 1)

For each n, define FI;-module P, by P,(S) = k[Hompr,({1,...,n},S)].
Lemma 2.5. Being f.g. is equivalent to being a quotient of a finite direct sum P, &---&P,, .

(So just need to answer question for the modules P,,)
Note that Ap,(n)=(")r!=n(n-1)---(n —r+1).
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3. GROBNER METHODS

Idea: monomials easier than polynomials. (Usual reduction is taking initial terms)
Want to use leading terms of elements in F1;. One desirable property:

*) if f < f' (morphisms) then gf < gf’ for all morphisms g

But consider f,f': [2] = [3] with f(1)=1,f(2)=2 and f'(1)=2,f(2) =1 and g,g’: [3] — [4]
Wlth g(l) = 1,g(2) = 2,g(3) = 3 and g,(l) = 2,g,(2) = 1,g,(3) = 3 Then gf = g’f’ and g'f = gf’
so both £ > f’' and f’ > f leads to a contradiction.

Fix: Remove the symmetric group actions.
Define category O ;:

e objects are ordered finite sets
e morphism S — T is increasing injection f: S — T and function 7'\ f(S) — [d].

Define OI; -modules, submodules, f.g. modules in same way. P, are replaced by @,:
Qn(S) =k[Homp,({1,...,n},S)].

Have forgetful functor ®: OI; — F14
So given F'I -module M, have pullback ®*(M) which is an OI ;-module.
®* is exact, so M < N implies ®*(M) < ®*(N).

Proposition 3.1. M is fg. F1;-module if and only if ®*(M) is a f.g. OI ;-module.

Proof. M f.g. implies M is quotient of P, & ---® P, .
So ®*(M) is quotient of ®*(P,,)®--- & ®*(P, ). Now use that ®*(P,) = Q?;”!.
Other direction: F'I; has more operators than Ol . [
(So it suffices to prove @, are Noetherian)

Definition 3.2. A monomial in @, is basis vector given by morphism [n] — S.
OI;-morphism {1,...,n} — {1,...,r} is identified with word in {x,1,...,d} of length r where
* appears n times.
Monomial submodule of @, is one generated by monomials. U

Proposition 3.3. Monomial submodules of @, are f.g.

Proof. Submodule in @, generated by word w (basis element) is all other words that contain
w as a subword. Get partial order on words: Higman’s lemma implies there are no infinite
antichains. For any monomial submodule, build sequence of monomials x1,x9,... where x;
is minimal degree such that it is not generated by x1,...,x;_1. This must be finite! ]

Ordering words lexicographically gives total ordering with crucial property (*) and allows
us to define initial terms

in<(f) =max{m | m monomial with nonzero coeffin f}.

and initial submodules
in<(M)=k{in(f)| f e M}.

Standard arguments imply submodule N f.g. iff its initial submodule is f.g.:

Lemma 3.4. If Nc M and in.(N)=in.(M), then N =M.
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Proof. If not, pick f € M\ N with in.(f) minimal. There exists g € N with in.(g) =in(f).
Then f — g€ M\ N and has smaller initial term. 0

Other uses of Grobner methods:

¢ Dotsenko—Khoroshkin: shuffle operads
¢ Aschenbrenner—Hillar, Hillar—Sullivant: monoidal equivariant ideals in poly. rings

4. FURTHER DIRECTIONS

¢ Analogy with commutative algebra further developed in S.—Snowden, “GL-equivariant
modules over polynomial rings in infinitely many variables”, arXiv:1206.2233.

e Can generalize by replacing F'I by linear version VI(F,) or even VI(R) — applica-
tions to cohomology of congruence subgroups of arithmetic groups, mapping class
groups, etc.

e What is behavior of Hilbert function of f.g. FI;-modules? Know that it is bounded
by p(n)d" for polynomial p. Examples of FI;-modules? one example: configuration
spaces of disconnected manifolds (with d components).

Other approximate candidates: cohomology of (Fulton—-MacPherson) compactifica-
tions of conf. spaces; cohomology of Deligne-Mumford compactification of ./ ,
« Define category FI?:
— Objects are finite sets
— morphism S — T is an injection f: S — T and a perfect matching on 7'\ f(S).
Do FI®-modules have Noetherian property? This fails for OI'®-modules!
When Q ck, FI®-modules is a model for O(co)-modules where O(co) = U, O(n).

e Use Kruskal tree theorem? (Homeomorphic embeddings of labeled rooted trees)

¢ Can use category of surjections to prove A-modules (in the sense of Snowden) are
Noetherian (strengthens his previous results).


http://arxiv.org/abs/1206.2233
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