Representations of Lie superalgebras and determinantal varieties

arXiv:1207.3309, arXiv:1312.2255

Representations of algebraic groups, Lyon, July 10, 2014

Steven Sam

1. Z-GRADINGS ON CLASSICAL LIE SUPERALGEBRAS

Let $(R, \mathfrak{m}, \mathbf{k})$ be a (graded) local ring.

 $\operatorname{Ext}_R^{\bullet}(\mathbf{k},\mathbf{k})$ is the enveloping algebra of a (positively) graded Lie algebra $\pi(R)_{\bullet}$.

If M is a (graded) R-module, then $\operatorname{Ext}_R^{\bullet}(M,\mathbf{k})$ is a left-module over $\pi(R)_*$.

If a Lie algebra \mathfrak{g} acts on R, form $\widetilde{\pi}(R)_{\bullet} = \mathfrak{g} \oplus \pi(R)_{\bullet}$ with $\deg(\mathfrak{g}) = 0$. $\widetilde{\pi}(R)_{*}$ acts on M if there is compatible \mathfrak{g} -action.

Examples:

(1) $R = \text{Sym}(E \otimes F)$ and $\mathfrak{g} = \mathfrak{gl}(E) \times \mathfrak{gl}(F)$.

 $\pi(R) = E^* \otimes F^*$ (odd degree, with trivial bracket)

Note: $\mathfrak{gl}(E|F) = (E \otimes F) \oplus \widetilde{\pi}(R)$ (**Z**-grading of general linear Lie superalgebra)

(2) $R = \text{Sym}(\text{Sym}^2 E)$ and $\mathfrak{g} = \mathfrak{gl}(E)$

 $\pi(R) = \text{Sym}^2 E^*$ (odd degree, with trivial bracket)

Note: $\mathfrak{pe}(E) = \bigwedge^2(E) \oplus \widetilde{\pi}(R)$ (**Z**-grading of periplectic Lie superalgebra)

(3) Equip *V* with symplectic form and pick *E* with $2\dim(E) \leq \dim(V)$.

 $R = \text{Sym}(E \otimes V)/(\wedge^2 E)$ (ideal of positive degree $\mathfrak{sp}(V)$ -invariants: Given $\varphi : E^* \to V$,

take entries of composition $E^* \xrightarrow{\varphi} V \cong V^* \xrightarrow{\varphi^*} E$) and $\mathfrak{g} = \mathfrak{gl}(E) \otimes \mathfrak{sp}(V)$.

$$\pi(R) = (E^* \otimes V^*) \oplus (\wedge^2 E^*)$$

Note: Put orthogonal form on $E \oplus E^*$. Then $\mathfrak{osp}(E \oplus E^*|V) = (\bigwedge^2 E) \oplus (E \otimes V) \oplus \widetilde{\pi}(R)$. (**Z**-grading on orthosymplectic Lie superalgebra)

Question: When does action of $\widetilde{\pi}(R)$ on $\operatorname{Ext}_R^{\bullet}(M,\mathbf{k})$ extend to whole Lie superalgebra? (possibly after twisting by character of \mathfrak{g})

Remarks: second case is asymmetric, third case uses longer grading; each algebra R is Koszul

In each case, R is functions on a space of matrices. Let M be an ideal generated by $r \times r$ minors (pick a size r > 1 that you like).

M has internal grading, so $\operatorname{Ext}_R^{\bullet}(M,\mathbf{k})$ is a direct sum of its linear strands since $\operatorname{Ext}_R^{\bullet}(\mathbf{k},\mathbf{k})$ acts linearly.

Assume **k** has char. 0.

Theorem 1.1 (Akin–Weyman). In case 1, each linear strand of $\operatorname{Ext}_R^{\bullet}(M, \mathbf{k})$ is a h.w. irreducible representation of $\mathfrak{gl}(E|F)$.

(bottom representation of sth linear strand is $\mathbf{S}_{s^{s+r-1}}E^* \otimes \mathbf{S}_{s^{s+r-1}}F^*$)

Theorem 1.2 (Sam). In case 2, each linear strand of $\operatorname{Ext}_R^{\bullet}(M, \mathbf{k})$ is a h.w. irreducible representation of $\operatorname{\mathfrak{pe}}(E)$.

(bottom representation of sth linear strand is $S_{(2s)^{2s+r-2}}E^*$) (orthosymplectic case explained later)

Proof idea: Pragacz–Weyman construct linear strands of minimal free resolution in case 1 using tensor operations on basic representation $F \otimes R(-1) \to E^* \otimes R$

Approach 2: Use linear acyclicity of linear strands to build a map from appropriate Kac module. Show the map is surjective and kernel closed under Lie algebra action

2. Example: Gulliksen-Negard complex

Case 1: let $\dim(E) = \dim(F) = 3$ and let M be 2×2 minors. Minimal free resolution of M:

Apply $\operatorname{Hom}_R(-,\mathbf{k})^*$ to get $\operatorname{Ext}_R^{\bullet}(M,\mathbf{k})$.

Top row can be built as follows: take tensor product of 2-term complexes $E \otimes R(-2) \to F^* \otimes R(-1)$ and $F \otimes R(-2) \to E^* \otimes R(-1)$ (vector and covector representations) and take homology in middle (and twist by $\det E \otimes \det F$ which is unimportant):

$$R(-3)$$

$$\uparrow$$

$$E^* \otimes F^* \otimes R(-2) \longleftarrow \begin{array}{c} E \otimes E^* \\ F \otimes F^* \end{array} \otimes R(-3) \longleftarrow E \otimes F \otimes R(-4)$$

$$\uparrow$$

$$R(-3)$$

(explain out loud that vector and covector representations have obvious actions and that tensoring and taking homology preserves this property; or appeal to Koszul duality)

3. COMMUTATIVE ANALOGY

Let $W = \operatorname{Sym}(E \otimes F)/I_r$ where I_r is ideal of $r \times r$ minors. Then W has action of Lie algebra $(\mathfrak{gl}(E) \times \mathfrak{gl}(F)) \oplus (E \otimes F)$.

This is part of a **Z**-grading for $\mathfrak{gl}(E \oplus F)$, action can be extended after suitable twist of center; W is a h.w. (weight $-r\omega_k$ where $k = \min(\dim E, \dim F)$) irreducible representation.

4. Orthosymplectic results

Theorem 4.1 (Sam). Let I be the ideal of maximal minors of R. Then $\operatorname{Ext}_R^{\bullet}(I, \mathbf{k})$ is a l.w. irreducible representation of $\operatorname{\mathfrak{osp}}(E \oplus E^*|V)$. In particular, it has a linear resolution.

(bottom representation is $\bigwedge^e E \otimes \bigwedge_0^e V$ of $\mathfrak{gl}(E) \times \mathfrak{sp}(V)$)

(Can handle more general class of modules like powers of I, but more complicated to state carefully)

Proof. (Idea: assuming statement is true, the Koszul dual of I is a single module with a linear resolution and we guess where it comes from.)

• Start with $\mathfrak{osp}(E \oplus E^*|V)$ -module N which is proposed Koszul dual and which appears in a super Howe dual pair.

(In case someone asks: let $U = \mathbb{C}^2$ with alternating form — strangely enough, if want I^k , need to use $U = \mathbb{C}^{2k}$ — pick Lagrangian $F \subset V$, and take oscillator representation $\mathrm{Sym}(U \otimes (E^*|F))$ of $\mathfrak{spo}(U \otimes (E \oplus E^*|V)) \supset \mathrm{Sp}(U) \times \mathfrak{osp}(E \oplus E^*|V))$

Use this and Hochschild–Serre spectral sequence (and Kostant–BWB to calculate homology of super polynomial functors) coming from natural filtration on $\pi(R)$ to show it has linear resolution over $\pi(R)$.

• So know presentation of $N^!$ (at least know generators and relations as representation of $\mathfrak{gl}(E) \times \mathfrak{sp}(V)$). But in this case, the representations determine the map uniquely up to scalar, so just verify it matches generators and relations of I.