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1. Motivation

Two main motivations:

The first is representation stability: a generalization of homological stability in the presence of
group actions which was introduced by Church and Farb. For symmetric group actions, this is
formalized in the notion of FI-modules, introduced by Church, Ellenberg, and Farb. FI-modules
turn out to be modules over a twisted commutative algebra (the free tca generated by 1 element
of degree 1). The study of this tca reveals deeper algebraic properties of FI-modules (we will
spend a lot of time on this tca). The study of general tca’s is relevant for generalized versions
of FI-modules.

The second motivation comes from studying equivariant constructions in commutative alge-
bra. We will not discuss this aspect. Some examples are the pure free resolutions constructed by
Eisenbud, Fløystad, and Weyman. Another is the theory of ∆-modules, introduced by Snowden,
and used in the study of the structural property of syzygies of Segre embeddings of projective
space and related varieties.

2. Background

Reference: arXiv:1209.5122

2.1. Definitions. Let FB be the category of finite sets and bijections.
Let k be a commutative ring and Modk the category of k-modules.
Set Vk := Fun(FB,Modk). Objects are just sequences of representations of symmetric groups.
Given a k-module M , define M[i] ∈ Fun(FB,Modk) by

S 7→

{
M if |S | = i

0 if |S | , i

and all morphisms act by the identity.
Put a monoidal structure on Vk:

(V ⊗W )(S) =
⊕

S=S1∐S2

V (S1)⊗kW (S2).

This has a symmetry τ given by interchanging factors. The unit is the constant functor k[0].
So we can define tensor powers V ⊗n, and τ allows one to define symmetric powers Symn(V )

and exterior powers
∧n(V ) as quotients of V ⊗n.

1

http://arxiv.org/abs/1209.5122


2

Example 2.1.

U [1]⊗n(S) =



⊕
σ∈Aut(S)

U⊗S � (U⊗n)⊕n! if |S | = n

0 else

Symn(U [1])(S) =

{
U⊗S if |S | = n

0 else

The action of Aut(S) on U⊗S is by permuting tensor factors. �

Definition 2.2. A twisted commutative algebra (tca) (over k) is a commutative, associative,
unital algebra in (Vk,⊗,τ).
A morphism of tca’s is a natural transformation A→ B that intertwines multiplication. �

Remark 2.3. The terminology is due to M. Barratt, “Twisted Lie algebras”. �

Explicitly, a tca is a functor A : FB→Modk with maps

µ : A⊗A→ A, k[0]→ A

such that the diagrams commute:

A⊗A⊗A
µ23

//

µ12
��

A⊗A

µ
��

A⊗A

τ
��

µ
// A

A⊗A
µ

// A A⊗A

µ

<<

(and unital condition).

Definition 2.4. Given a tca A, an A-module is a functor M : FB→Modk together with a map
µ : A⊗M→M such that the diagram

A⊗A⊗M

µ12
��

µ23
// A⊗M

µ

��
A⊗M

µ
// M

commutes.
A-modules form an abelian category where the morphisms are natural transformations that

intertwine multiplication.
Given V : FB→Modk, A⊗V is naturally an A-module. �

Definition 2.5. A functor V : FB→Modk is finitely generated if V (S) = 0 for all but finitely
many values of |S | and each V (S) is a finitely generated k-module.

A tca A is finitely generated (in degree ≤ d) if it is a quotient of Sym(V ) for finitely
generated V (such that V (S) = 0 for |S | > d).

An A-module M is finitely generated if it is a quotient of A⊗V for finitely generated V .
M is noetherian if every submodule is finitely generated.
A is noetherian if every finitely generated A-module is noetherian. �
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Example 2.6. Sym(U [1])(S) =U⊗S and multiplication is given by concatenation:

(Sym(U [1])⊗ Sym(U [1]))(S) // Sym(U [1])(S)

⊕
S=S1∐S2

U⊗S1 ⊗U⊗S2 // U⊗S

Note: it is not exactly meaningful to speak of the product of two elements, but it is meaningful
to ask about the set of elements generated by an element. �

Theorem 2.7. Let k be noetherian. A tca A finitely generated in degree ≤ 1 is noetherian.

(We will not prove this now)

Question 2.8. Let k be noetherian and A be a finitely generated tca. Is A noetherian?

2.2. Alternative descriptions. Let AU = Sym(U [1]) with U � kd . Pick a basis x1, . . . ,xd for
U . Define a category FId as follows: the objects are finite sets and a morphism S → T is an
injective map f : S→ T together with a function g : T \ f (S)→ {1, . . . ,d}.
An FId-module is a functor FId →Modk.

Proposition 2.9. The category of FId -modules is equivalent to the category of AU -modules.

Proof sketch. Let M be an AU -module. Define N : FId →Modk by N (S) =M(S).
Given f : S→ T and g : T \ f (S)→ {1, . . . ,d}, consider the multiplication map

(AU ⊗M)(T ) // M(T )

⊕

T=T1∐T2

U⊗T1 ⊗M(T2) // M(T )

Set T2 = f (S); then g picks out a basis element v ∈ U⊗T1 so define N(f ,g) to be the restriction

to v ⊗M(T2)→M(T ). �

Special case: Sym(k[1])-modules are equivalent to functors on the category FI of finite sets
and injections.

2.3. Polynomial functors. Now assume that k is an infinite field. Write Veck for the category
of finite dimensional vector spaces over k.

Definition 2.10. A functor F : Veck→ Veck is polynomial if for all V ,V ′, the map

HomVeck(V ,V ′)→HomVeck(F(V ),F(V ′))

is defined by polynomial functions. Let Polk be the category of polynomial functors. �

Polk has a monoidal structure:

(F ⊗F ′)(V ) = F(V )⊗k F
′(V )

and a symmetry τ which interchanges the factors.
Note that a polynomial functor is naturally a direct sum of its homogeneous parts, so we have

Polk =
⊕

d≥0
Polk,d .
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Define a functor Φ : Fun(FB,Veck)→ Polk by V 7→ΦV where ΦV is defined by:

ΦV (W ) =
⊕

n≥0

(V ({1, . . . ,n})⊗kW
⊗n)Σn

Here Σn is the symmetric group, which acts on W⊗n by permuting factors, and the subscript
denotes coinvariants, i.e., tensoring with the trivial representation.

Both categories Veck and Polk have “locally finite” subcategories: in Veck, consider those
functors such that dimV (S) < ∞ for all S , and for Polk consider those functors so that the
degree d piece is a finite length functor. We will restrict attention to these from now on.

Lemma 2.11. Φ is a tensor functor.

Proof. Pick V ,V ′ ∈ Fun(FB,Veck). Write Vi = V ({1, . . . , i}).

(ΦV ⊗ΦV ′ )(W ) =ΦV (W )⊗ΦV ′ (W )

= (
⊕

n≥0

(Vn ⊗W
⊗n)Σn

)⊗ (
⊕

n≥0

(V ′n ⊗W
⊗n)Σn

)

=
⊕

n≥0

⊕

i+j=n

(Vi ⊗W
⊗i)Σi

⊗ (V ′j ⊗W
⊗j )Σj

=
⊕

n≥0

⊕

i+j=n

(Ind
Σn

Σi×Σj
(Vi ⊗V

′
j )⊗W

⊗n)Σn

=ΦV⊗V ′ (W ).

The fourth equality comes from associativity of tensor products (interpreting induction as a
tensor product), and the last comes from the fact that the tensor product on Vk is defined by
induction if we choose representatives for each isomorphism class of sets. �

2.4. Schur functors.

Definition 2.12. A partition λ is a decreasing sequence of positive integers λ1 ≥ λ2 ≥ · · · ≥ λn.
We represent this as a Young diagram by drawing λi boxes left-justified in the ith row, starting

from top to bottom. The dual partition λ† is obtained by letting λ†i be the number of boxes in
the ith column of λ. �

Example 2.13. Let λ = (4,3,1). Then λ† = (3,2,2,1). �

Definition 2.14. Let E be a vector space. Let λ be a partition with n parts and write m = λ1.
We use SnE to denote the nth symmetric power of E. The Schur functor Sλ(E) is the image
of the map

λ†1∧
E ⊗ · · · ⊗

λ†m∧
E

∆
−→ E⊗λ

†
1 ⊗ · · · ⊗E⊗λ

†
m = E⊗λ1 ⊗ · · · ⊗E⊗λn

µ
−→ Sλ1E ⊗ · · · ⊗ SλnE,

where the maps are defined as follows. First, ∆ is the product of the comultiplication maps∧i E→ E⊗i given by e1∧· · ·∧ei 7→
∑

w∈Σi
sgn(w)ew(1)⊗· · ·⊗ew(i). The equals sign is interpreted

as follows: pure tensors in E⊗λ
†
1⊗· · ·⊗E⊗λ

†
m can be interpreted as filling the Young diagram of λ

with vectors along the columns, which can be thought of as pure tensors in E⊗λ1 ⊗· · ·⊗E⊗λn by

reading via rows. Finally, µ is the multiplication map E⊗i → S iE given by e1⊗· · ·⊗ei 7→ e1 · · ·ei .
In particular, note that SλE = 0 if the number of parts of λ exceeds rankE. �
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Example 2.15. Take λ = (3,2). Then the map is given by

(e1 ∧ e2)⊗ (e3 ∧ e4)⊗ e5 7→
e1 e3 e5
e2 e4

−
e2 e3 e5
e1 e4

−
e1 e4 e5
e2 e3

+
e2 e4 e5
e1 e3

7→ (e1e3e5 ⊗ e2e4)− (e2e3e5 ⊗ e1e4)− (e1e4e5 ⊗ e2e3) + (e2e4e5 ⊗ e1e3)
�

2.5. Schur–Weyl duality. If char(k) = 0, then both Vk and Polk are semisimple categories
and the simple objects are naturally indexed by partitions.

The irreducibles of Σn are the Specht modules Mλ for |λ| = n and so the irreducibles for Vk

are given by the Mλ.
The irreducible polynomial functors are the Schur functors Sλ.
Given a vector space V , there are commuting actions of GL(V ) and Σn on V ⊗n.

Theorem 2.16 (Schur–Weyl duality). If char(k) = 0, then

V ⊗n =
⊕

λ
ℓ(λ)≤dim(V )
|λ|=n

Sλ(V )⊠Mλ.

Proposition 2.17. If char(k) = 0, then Φ : Vk→ Polk is an equivalence.

Proof. Schur–Weyl duality says that Φ(Mλ) = Sλ. Now use that both categories are semisimple
and every locally finite object is a direct sum of these objects. �

So to describe tca’s in characteristic 0, we can use polynomial functors.

One more reduction: let k∞ =
⋃

d≥0k
d where kd ⊂ kd+1 is included as the span of the first

d basis vectors. Schur functors satisfy

Sλ(k
∞) =

⋃

d≥0

Sλ(k
d), Sλ(k

d) = Sλ(k
∞)GL(k[d+1,∞)).

In particular, the functor

Polk→GL∞(k)-modules

F 7→ F(k∞)

is an equivalence.
So we come to another equivalent definition of tca’s in characteristic 0:

Definition 2.18. If char(k) = 0, then a tca is an associative, commutative, unital k-algebra A
equipped with a (locally finite) polynomial action of GL∞(k) such that the multiplication map
is equivariant. An A-module is a module over A with a compatible action of GL∞(k). �

The algebra Sym(U [1]) becomes Sym(U ⊗k∞) with the action of GL∞(k) on the k∞ factor.

3. symc1 results

Reference: arXiv:1206.2233
In this lecture, we focus on the tca A = Sym(C[1]). This is the algebra C[x1,x2, . . . ] with

the action of GL(∞) = GL∞(C) by linear changes of coordinates. Let m =
⊕

d>0
Ad be the

maximal ideal.
Recall that A-modules are equivalent to functors from FI, the category of finite sets and

injective maps, to the category of C-vector spaces.

http://arxiv.org/abs/1206.2233
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Recall also Schur functors Sλ = Sλ(C
∞) from last lecture; they are the simple GL(∞)-

representations and that an A-module is finitely generated if it is a quotient of A⊗V where V
is a finite direct sum of Sλ.

3.1. Torsion A-modules. The simple A-modules are Schur functors Sλ where m =
⊕

d>0
Ad

acts trivially.

Proposition 3.1. If ExtnA(Sλ,Sµ) , 0 for n > 0, then |µ| > |λ| and ExtnA(Sλ,Sµ) is finite-dimensional.

Proof. The Koszul complex gives a projective resolution of Sλ:

Sλ ⊗ (· · · → A⊗

2∧
→ A⊗

1∧
→ A)→ Sλ→ 0.

Now apply HomA(−,Sµ) and take homology. If Extn , 0 for n > 0, then Sµ appears in Sλ⊗A⊗∧n and in particular |µ| > |λ|. �

Let Modtors
A be the category of finitely generated A-modules which are annihilated by some

power of m.

Corollary 3.2. Modtors
A has enough injectives, and every object has a finite injective resolution.

Proof. This follows from this directed property. �

A priori, injectives in Modtors
A need not be injective as A-modules but we will see later that

they are.

3.2. Structure of projective A-modules.

Proposition 3.3. The indecomposable projective A-modules are A⊗Sλ for each partition λ.

Definition 3.4. If λi ≤ µi for all i, write λ ⊆ µ. If also λi ≥ µi+1 for all i, and |µ|− |λ| = d, write
µ/λ ∈HSd (horizontal strip). �

µ/λ ∈HSd can be represented graphically:

Example 3.5. (4,2)/(2,1) ∈HS3 but (4,3)/(2,1) <HS4:

x x
x

x x
x x

. �

Two important facts about the projectives A⊗Sλ:

Theorem 3.6 (Pieri’s rule).

Symd ⊗Sλ =
⊕

µ, µ/λ∈HSd

Sµ.

Theorem 3.7 (Olver). The submodule of A⊗Sλ generated by Sµ is the sum of all Sν that appear in
the decomposition of both A⊗Sλ and A⊗Sµ.

For D ≥ λ1, set

L≥Dλ =
⊕

d≥D

S(d,λ1,λ2,... ).

Then L≥Dλ can be realized a quotient module of A⊗S(D,λ).

This is the unique A-module structure so that L≥Dλ is generated by S(D,λ).
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Proposition 3.8. There is a filtration of A-submodules

0 = F−1 ⊂ F0 ⊂ · · · ⊂ Fλ1
= A⊗Sλ

such that

Fi /Fi−1 �
⊕

ν
λ/ν∈HSi

L
≥λ1
ν .

Example 3.9. λ = (1,1), i.e., Sλ = ∧2. Then have

0→ L≥11,1→ A⊗S1,1→ L≥11 → 0.

Submodule structure:

· · ·

· · ·

Top part is L≥11,1, bottom part is L≥11 . �

Proof. A⊗Sλ is multiplicity-free. Let Fi be sum of Sµ in A⊗Sλ such that

i ≥ µ1 − (|µ| − |λ|) =
∑

j≥1

λj −
∑

j≥2

µj .

So if Sµ ∈ Fi and µ ⊆ ν, then Sν ∈ Fi , so Fi is an A-submodule. The subquotient identification

is a combinatorial exercise together with the uniqueness property of L
≥λ1
ν being generated by

S(λ1,ν). �

3.3. Serre quotient. Let ModA be the category of finitely generated A-modules. We study it

by stratifying it. Let Modtors
A be the subcategory of finite length A-modules and define

ModK =ModA /Modtors
A .

Intuition: K = Frac(A) and ModK is the category of “coherent sheaves” on “Proj(A)”
To be precise, the objects of ModK are the objects of ModA, and

HomModK (M,N ) = colimHomModA(M
′,N/N ′)

where the colimit is over all M ′ ⊆M and N ′ ⊆N such that M/M ′ and N ′ are finite length.

An alternative description: the fraction field K of A has a GL(∞)-action and ModK is the
category of finitely generated semi-linear representations: K-vector spaces V with a GL(∞)-
action such that

g.(αv) = (g.α)(g.v)

for g ∈GL(∞), α ∈ K , and v ∈ V .
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Remark 3.10. One can show that Modtors
A ≃ModK . The intuition is as follows: let P ⊂GL(∞)

be the stabilizer of a nonzero vector in C∞. For instance, pick the vector e1 so that P =(
1 C∞

0 GL(∞)

)
. Then P is the semidirect product GL(∞)⋉C∞ and so P-modules are the same

as A-modules!
But ModK can be thought of as equivariant sheaves on C∞ \{0}. Since this is a homogeneous

space, these are determined by their fibers over a given point, for example over e1, so that
ModK is equivalent to the category of finite length P-modules. �

Lemma 3.11. (a) For D′ ≥D, the inclusion L≥D
′

λ ⊆ L≥Dλ becomes an isomorphism in ModK .
(b) The resulting object, called Lλ, is simple in ModK .

Proof. (a) the quotient L≥Dλ /L≥D
′

λ is finite length.

(b) all submodules of L≥Dλ are of the form L≥D
′

λ . �

Corollary 3.12. Every object of ModK has finite length (i.e., the Krull dimension of ModA is 1).
Every simple object is of the form Lλ.

Proof. Every finitely generated A-module is a quotient of a finite direct sum of A⊗Sλ. Now use
the explicit filtration. �

Theorem 3.13. The image of A ⊗ Sλ in ModK is an indecomposable injective object; call it Qλ.
Every indecomposable injective is of this form.
Every object in ModK has finite injective dimension.

Proof omitted for first point; I could not find a reasonably simple explanation.

For the second point, we can use the equivalence Modtors
A ≃ModK .

3.4. Section functor.

Theorem 3.14. The localization functor T : ModA → ModK has a right adjoint S : ModK →
ModA.

We can define it as follows: every element in the image of T (M)→ N where M ∈ModA is
polynomial, i.e., generates a polynomial subrepresentation of N . So S(N ) is the submodule of
all polynomial elements.

S is the section functor. We omit the proof that S(N ) is a finitely generated A-module.

Definition 3.15. A (finitely generated) A-module M is saturated if ExtiA(N,M) = 0 for i = 0,1
and all torsion A-modules. �

Lemma 3.16. The modules L
≥λ1
λ and A⊗Sλ are saturated.

Proof. Explicit calculations; proof omitted. �

A few basic properties of S (follows from Gabriel’s results);

Proposition 3.17. (a) S is left exact
(b) S takes injective objects to injective objects
(c) For M ′ ∈ModK , S(M

′) is saturated and the adjunction T (S(M ′))→M ′ is an isomorphism
(d) For M ∈ ModA, the adjunction M → S(T (M)) is an isomorphism if and only if M is

saturated.
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3.5. Structure of injective A-modules.

Corollary 3.18. A⊗Sλ is injective.

Proof. A⊗Sλ is saturated, so is isomorphic to T (S(A⊗Sλ)) = T (Qλ) and Qλ is injective. Now
use that S preserves injectives. �

Let Modtors
A be the category of finitely generated torsion A-modules.

Lemma 3.19. An injective object in Modtors
A is also injective in ModA.

Proof. Let I be an injective object in Modtors
A and let M be an arbitrary A-module. If M and I

have no Schur functors Sλ in common then any extension

0→ I → E→M→ 0

splits uniquely in PolC and hence also as A-modules.
For n≫ 0, mnM and I have no common Schur functors. The short exact sequence

0→m
nM→M→M/mnM→ 0

leads to

Ext1A(M/mnM,I )→ Ext1(M,I )→ Ext1(mnM,I )

The rightmost group is 0 by choice of n and the leftmost group is 0 sinceM/mnM is torsion. �

Let Iλ be the injective envelope of Sλ ∈ Modtors
A . This can be described as the restriction

of Sλ from GL(∞) to P under the interpretation that finite length A-modules are the same as
finite length P-modules.

Proposition 3.20. Every injective module is a direct sum of A⊗Sλ and Iµ.

Proof. Let I be an injective module. Let Itors be its maximal torsion submodule – this is injective

in Modtors
A and hence is injective in ModA, so it splits off: I = Itors⊕ I

′ . Then I ′ is saturated, so
I ′ = S(T (I ′)). By adjunction, for any module M , we have HomA(M,I ′) = HomK (T (M),T (I ′)),
so T (I ′) is injective in ModK . So T (I ′) =

⊕
λ
Qλ and so I ′ =

⊕
λ
(A⊗Sλ). �

Theorem 3.21. Every finitely generated A-module M has finite injective dimension.

Proof. T (M) has a finite injective resolution I• in ModK . So we get S(T (M)) → S(I•). The
kernel and cokernel of M → S(T (M)) are torsion, and torsion modules have finite injective

dimension since Modtors
A is directed. Now combine the injective resolutions to get one for

M . �

Corollary 3.22. Let P be a property of finitely generated A-modules such that

(1) (2 out of 3): If 0→M1→M2→M3→ 0 and P holds for two of the Mi , then it also holds
for the third

(2) P holds for all Sλ
(3) P holds for all A⊗Sλ

Then P holds for all modules.

Proof. (1) and (2) imply P holds for all torsion injectives Iλ. Now use that every f.g. module has
a finite injective resolution. �
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3.6. Hilbert series. Hilbert series of A-modules make no sense since dimensions are infinite.
But can use FI description. Recall that a polynomial functor M is the same as a functor

M̃ : FB→ VecC. The Hilbert series of M is

HM(t) =
∑

n≥0

dimC M̃nt
n.

Proposition 3.23. HM(t) is a rational function of the form f (t)/(1− t)d for some d . Equivalently,

the function n 7→ dimC M̃n is polynomial for n≫ 0.

Proof. Hilbert series is additive with respect to exact sequences so this rationality result satisfies
2 out of 3. It is obvious for Sλ. Also

(Ã⊗Sλ)n = Ind
Σn

Σn−|λ|×Σ|λ|
C⊠Mλ

so has dimension (dimMλ)
( n
|λ|

)
and hence also has the desired form. �

This captures little information. For example, does not distinguish representations with the
same dimension. Every object F ∈ VC has a character ch(F) defined as the trace of the diagonal
matrix with entries x1,x2, . . . acting on F(C∞). Define enhanced Hilbert series of M :

H̃M(t) =
∑

n≥0

ch(Mn)t
n

Define sλ = ch(Sλ) (Schur function).
(Schur–Weyl duality says that we could also use characters of symmetric groups instead of

these trace functions)

Proposition 3.24. H̃M(t) = pM(t)
∏

i≥1(1 − xit)
−1 + qM(t) where pM , qM are polynomials in sλ

and t.

Proof. This is obvious for simples Sλ. Note that

H̃Sλ⊗A(t) = ch(Sλ)
∏

i≥1

(1− xit)
−1

and that this property satisfies 2 out of 3. �

3.7. Local cohomology. We stated earlier that the category of finitely generated A-modules
has enough injectives (in fact, every module has a finite injective resolution).

Given an A-module, define H0
m(M) to be the largest submodule annihilated by some power

of m =
⊕

d>0
Ad . This is clearly left-exact, so we can define its right-derived functors Hi

m. This
is local cohomology.

We will just state some basic facts about local cohomology and skip the technical proofs. We
wish to highlight analogies with local cohomology over polynomial rings.

Definition 3.25. Let M be an A-module. Define dM(n) to be the depth of A(Cn)-module
M(Cn) (recall that this is the length of the longest regular sequence in m(Cn)).

Fact: if M is not projective, then the function dM(n) is independent of n for n≫ 0.
This stable value is the depth of M . If M is projective, it has infinite depth. �

We have a version of Grothendieck’s vanishing theorem:

(Recall the classical version says that Hi
m(M) = 0 if i < depth(M) or if i > dim(M))
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Proposition 3.26. Let M , 0 be an A-module. Then inf{d | Hd
m(M) , 0} is the depth of M (con-

vention: inf(∅) =∞) and sup{d − 1 | Hd
m(M) , 0} is the injective dimension of T (M) (convention:

sup(∅) = 0 and injective dimension of 0 is −1).

There is another left-exact functor on A-modules defined by M 7→ ST (M). Following the
analogy of ModK being coherent sheaves on Proj(A), its right derived functors are “(coherent)
sheaf cohomology”. We have the following analogue of the relation between local and sheaf
cohomology:

Proposition 3.27. Let M be an A-module. Then there is an exact sequence

0→H0
m(M)→M→ S(T (M))→H1

m(M)→ 0

and for each i > 1,

Hi+1
m (M) = RiS(T (M)).

qM(t) from Proposition 3.24 can be thought of as the measure of failure for n 7→ dimC M̃n to
be a polynomial for all n ≥ 0. In fact, it comes from local cohomology:

Proposition 3.28. qM(t) =
∑

i≥0(−1)
iH̃Hi

m(M)(t).

Proof. Both sides are additive with respect to exact sequences, so just need to check simples

and projectives by 2 out of 3 property. For simples, have M = H0
m(M) and qM(t) = H̃M(t). For

projectives, qM(t) = 0 and Hi
m(M) = 0 for all i . �

3.8. Regularity & Koszul duality. Let C be the residue field A/m. If M is a finitely generated

A-module, then the Tor groups TorAi (M,C) are objects of VC, so are naturally Z≥0-graded
and record information about the minimal projective resolutions of M : there exists a minimal
projective resolution

· · · → F2→ F1→ F0→M→ 0

where Fi = TorAi (M,C)⊗A.

The (Castelnuovo–Mumford) regularity of M is

reg(M) = sup
i

{j | TorAi (M,C)i+j , 0}.

Theorem 3.29. If M is finitely generated, then reg(M) <∞.

Proof. This is obvious for M = A⊗Sλ. For M = Sλ, we have the Koszul complex

Sλ ⊗ (· · · → A⊗

2∧
→ A⊗

1∧
→ A)→ Sλ→ 0

which shows that reg(M) = |λ|. The long exact sequence of Tor shows that finite regularity
satisfies 2 out of 3. �

There is a duality on VC: F
∨(V ) := F(V ∗)∗.

There is more structure: TorA• (M,C) is a comodule over the exterior (co)algebra B :=⊕
d≥0

∧d and it can be shown to be finitely cogenerated, and so TorA• (M,C)∨ is a finitely

generated module. The action preserves linear strands, so that this module is a direct sum of

TorA• (M,C)∨•+i for various i, and only nonzero for finitely many values of i .
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Theorem 3.30. M 7→ TorA• (M,C)∨ can be extended to an equivalence

Db(ModA) ≃Db(ModB)
op.

We omit the technical details but point out one interesting feature.

There is another operation on VC: S
†
λ := Sλ† . This turns out to be a monoidal equivalence.

Note that A† = B. So we get an interesting auto-equivalence

F : Db(ModA) ≃Db(ModA)
op.

This can be used to deduce the following symmetry. For a complex F• of A-modules, define

H̃F•
(t) =

∑
i(−1)

iH̃Fi
(t).

Recall the auto-equivalence

F : Db(ModA) ≃Db(ModA)
op.

Proposition 3.31. Let M ∈ Db(ModA) and write H̃M(t) = pM(t)
∏

i≥1(1 − xit)
−1 + qM(t). Then

H̃F(M)(t) = qM(−t)
∏

i≥1(1− xit)
−1 + pM(−t). In other words,

pF(M)(t) = qM(−t), qF(M)(t) = pM(−t).

This has an interesting consequence: define the Poincaré series of M as

PM(q, t) =
∑

i≥0

qiHTorAi (M,C)(t).

Theorem 3.32. If M is finitely generated then PM(q, t) is of the form f (q, t)/(1− qt)d .

Proof. Set Fi(M) = TorA• (M,C)∨,†•+i . Then

PM(q, t) =
∑

i≥0

q−iHFi (M)(qt).

There are finitely many i such that Fi(M) , 0, and each one is a finitely generated A-module.
Now use previous results. �

Also get analogous statement for enhanced Poincaré series

P̃M(q, t) =
∑

i≥0

qiH̃TorAi (M,C)(t).

Interesting note: the Poincaré series is not additive with respect to short exact sequences, so
a priori the rationality property above might not satisfy the 2 out of 3 property.

3.9. Summary of other results. A number of results about FI1 in char. 0 extend to FId . We
just state the results:

Theorem 3.33. LetM be a finitely generated FId -module (equivalently, A = Sym(U⊗C∞)-module).
Then:

(a) HM(t) and H̃M(t) are rational functions.

(b) TorA• (M,C)∨,†•+i is a finitely generated A-module for each i and is nonzero for only finitely many
i . In particular reg(M) <∞.

(c) PM(q, t) and P̃M(q, t) are rational functions.
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4. General theory of tca’s

4.1. Noetherian properties.

Conjecture 4.1. A finitely generated tca A is noetherian, i.e., every finitely generated A-module is
noetherian.

Some partial progress:

Theorem 4.2. Arbitrary noetherian coefficient ring. If A is finitely generated in degree ≤ 1, then A
is noetherian.

If λ is a partition, define ℓ(λ) to be the number of nonzero parts. Define ℓ(Sλ) = ℓ(λ) and
for a general polynomial functor F =

⊕
Sλ, define ℓ(F) = sup{ℓ(λ)}. Say that F is bounded if

ℓ(F) <∞.
A simple consequence of Littlewood–Richardson rule: ℓ(F ⊗F ′) = ℓ(F) + ℓ(F ′).

Theorem 4.3. Characteristic 0. If A is bounded, then A is noetherian.

Example 4.4. If A is finitely generated in degree ≤ 1, it is bounded.
For any tca A and r > 0, the sum of all Sλ with ℓ(λ) > r is an ideal and so there is a bounded

quotient A≤r . �

The advantage of char. 0 is the polynomial functor interpretation. In particular, we can
specialize. By definition, a sequence

0→ F1→ F2→ F3→ 0

of polynomial functors is exact if the same holds upon evaluation on all vector spaces. Also,
Sλ(C

n) , 0 if and only if n ≥ ℓ(λ). So we get

Lemma 4.5. If M is an A-module and ℓ(M) ≤ n, then the specialization map to Cn gives an
isomorphism of submodule lattices

{A-submodules of M} → {A(Cn)-submodules of M(Cn)}

Proof of Theorem 4.3. If A is bounded, then every finitely generated projective is too, so every
finitely generated A-module is bounded.
If n ≥max(ℓ(A), ℓ(M)), then we can specialize to Cn to show M is noetherian.
This follows since M(Cn) is a finitely generated module over a finitely generated algebra

A(Cn). �

4.2. Gröbner methods. Reference: arXiv:1409.1670
To show that tca’s finitely generated in degree ≤ 1 are noetherian, it suffices to handle free

ones, i.e., Sym(U [1]). Recall that its module category is equivalent to FId-modules.
Reminder: the objects of FId are finite sets and a morphism S → T is an injective map

f : S→ T together with a function g : T \ f (S)→ [d] where [d] := {1, . . . ,d}.

Define a category OId same as FId except the objects are ordered sets and the injection
f : S→ T is required to be order-preserving (no condition on g ).
For C ∈ {FId ,OId}, and each n ≥ 0, define a projective module PC,n by PC,n(S) = k[HomC([n],S)].

These are projective generators of the category of C-modules.

Theorem 4.6. The category of OId -modules is noetherian.

http://arxiv.org/abs/1409.1670
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Assume k is a field for simplicity.
It suffices to prove that POId ,n is noetherian for each n ≥ 0. Set P = POId ,n.
All of the information of P is contained in the graded vector space

⊕

m≥n

P([m])

together with the operations

k[HomOId
([m], [m′])]⊗P([m])→ P([m′]).

Amonomial of P is a basis vector e(f ,g) ∈ k[HomOId
([n], [m])] corresponding to a morphism

(f ,g) : [n]→ [m].
A monomial is encoded by a word w in {0, . . . ,d} of length m where 0 is used n times: given

(f ,g), replace the image of f ([n]) by 0 and mark the other elements using g .
Write ew instead of e(f ,g).
A word w contains w′ as a subword if w′ is obtained from w by deleting some letters. Then

write w ≥ w′ .
For the following lemma, we consider all words in {0, . . . ,d} (ignoring the restriction on 0):

Proposition 4.7 (Higman’s lemma). Given w1,w2, . . . , there exist i < j such that wi ≤ wj .

Proof. Call a sequence violating this condition bad. Assume they exist.
Pick a minimal bad sequence in the sense that ℓ(w1) is minimized amongst all of them, and

ℓ(wi) is minimal amongst all bad sequences starting with w1, . . . ,wi−1.
Let vi be the first letter in wi and let w′i be the result of deleting the first letter from

wi . Then for some infinite subsequence i1, i2, . . . , v is constant. By minimality, the sequence
w1, . . . ,wi1−1,w

′
i1
,w′i2 , . . . is not bad.

If wi ≤ w′ij , then wi ≤ wij .

If w′ij ≤ w′ik , then wij ≤ wik , so in either case we get a contradiction. �

A submodule of P is monomial if it is spanned by the monomials it contains.

Lemma 4.8. The submodule generated by ew′ ∈ P is the span of all ew such that w ≥ w′ .

Lemma 4.9. Every monomial submodule of P is finitely generated.

Proof. Suppose not; pick M ⊂ P monomial and not finitely generated.
So we can find monomials w1,w2,w3, . . . such that wi 6≤ wj for all i < j .
These don’t exist by Higman’s lemma. �

Order ≺ words first by length and then lexicographically. Given an element x =
∑
αwew ∈M ,

define init(x) = max{ew | αw , 0}. Define

init(M)([n]) = k{init(x) | x ∈M([n])}.

Lemma 4.10. (a) init(M) is an OId -submodule of P .
(b) If M ′ ⊆M and init(M) = init(M ′), then M =M ′ .

Proof. (a) Observe that if w ≥ w′, then w ≻ w′, so that for all morphisms (f ,g) and x ∈M , we
have M(f ,g)init(x) = init(M(f ,g)x).

(b) Suppose M ′ $ M . Pick x ∈M \M ′ with init(x) minimal. There exists y ∈M ′ such that
init(x) = init(y). So x − y ∈M \M ′ and init(x − y) ≺ init(x). Contradiction. �
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Corollary 4.11. P is noetherian. In particular, finitely generated OId -modules are noetherian.

Proof. Pick M ⊆ P . Then init(M) is finitely generated by say v1, . . . , vr .
Pick x1, . . . ,xr with init(xi) = vi and let M ′ be the submodule generated by xi .
Then M ′ ⊆M and init(M ′) = init(M) so M =M ′ .
Finally, noetherianity is preserved under finite direct sums and quotients. �

Theorem 4.12. Finitely generated FId -modules are noetherian.

Proof. It suffices to show that P = PFId ,n is noetherian. There is a forgetful functor

Φ : OId → FId

so we can pullback along Φ. This pullback preserves strict inclusions and Φ∗(P) � P⊕n!
OId ,n

, so we

are done. �

Remark 4.13. The monomial replacement (Gröbner degeneration) can also be used to get
general rationality results for Hilbert series but we do not discuss this here. �

4.3. Shortcomings. The next example of a tca is Sym(k[2]). Its module category also has a
functor description (this is true in general).

FI
(2) is category whose objects are finite sets and a morphism S→ T is an injection f : S→ T

and perfect matching on T \ f (S) (i.e., decomposition into 2-element subsets).

The category of Sym(k[2])-modules is equivalent to the category of FI(2)-modules.

We could try the strategy above. Define OI
(2) in the same way but with ordered sets and

injections.
We run into the following obstacle:

Example 4.14. The category of OI
(2)-modules is not noetherian: P = P

OI
(2),0 contains infinitely

generated monomial submodules.
An example is given by letting mn be the perfect matching on [2n] with edges (i, i +3) with

i odd. Then m3,m4, . . . generates such a monomial submodule. �

Remark 4.15. The non-noetherian property of OI
(2) says that monomial submodules need

not be finitely generated. However, the proof above only needs information about initial sub-
modules, which have some additional properties. It is plausible that initial submodules (of say
submodules of P

OI
(2),0) are finitely generated even if the general monomial submodule is not. �

In the final section, we will begin an investigation of degree 2 tca’s.

5. Degree 2 tca’s

Reference: arXiv:1302.5859
We now focus on tca’s generated in degree 2. Work over char. 0. There are 2 irreducible

representations of Σ2: trivial and sign, and the corresponding tca’s they generate are

Sym(Sym2
C
∞), Sym(

2∧
C
∞)

(described as polynomial functors).
We begin with the following observation:

Sym(Sym2) =
⊕

λ

S2λ, Sym(

2∧
) =

⊕

λ

S(2λ)†

http://arxiv.org/abs/1302.5859
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so they are multiplicity-free. Note that Sym(Sym2) is the same as Sym(k[2]) defined earlier.

Proposition 5.1 (various authors). The ideal generated by S2λ contains all S2µ with µ ⊇ λ. In

particular, every ideal of Sym(Sym2) is finitely generated. Similar statement for Sym(
∧2).

It is not known if each projective module Sym(Sym2) ⊗ Sλ is noetherian; similarly for

Sym(
∧2)⊗Sλ. Using the transpose operation, the two problems are interconnected.

We focus on Sym(Sym2) for simplicity of exposition.

5.1. Infinite orthogonal group. Set V = C∞ =
⋃

n≥0C
n with basis ei and equip it with orthog-

onal form ω:
ω(

∑

i≥1

aiei ,
∑

j≥1

bjej ) =
∑

k≥1

(a2k−1b2k + a2kb2k−1).

Let O(∞) ⊂GL(∞) be subgroup preserving ω. Then O(∞) =
⋃

n≥1O(2n).
A representation of O(∞) is algebraic if it is a subquotient of a finite direct sum of V⊗n.

Denote the category Rep(O).

Remark 5.2. The form ω provides a map Sym2(V)→ C which does not split. So Rep(O) is
not semisimple. �

A morphism S → T in FI
(2) is an injection f : S → T and a perfect matching on T \ f (S);

this gives a map V⊗T → V⊗S : apply ω to the 2-element subsets of T \ f (S) and identify

V⊗f (S) =V⊗S . This defines a functor

K : (FI(2))op→ Rep(O).

Let Rep
C
denote the category of functors C→ VecC. Use this to define

ΦK : (Rep(FI(2))op)
op→ Rep(O)

M 7→Hom(M,K)

where the Hom is the set of natural transformations. Also define

ΨK : Rep(O)→ (Rep(FI(2))op)
op

N 7→HomO(N,K).

Note we have an identification

(Rep(FI(2))op)
op = Rep

FI
(2)

M 7→ (S 7→M(S)∗).

Theorem 5.3. ΦK defines an equivalence between the finite length objects of Rep
FI

(2) and Rep(O)
with inverse ΨK. In fact, identifying RepFI

(2) ≃ModSym(Sym2
C∞), this defines a monoidal equiva-

lence.

Proof. Sketch:

(1) ΦK preserves simple objects (discussed next)
(2) Both ΦK and ΨK are left-exact; if M is finite length, then len(M) ≥ len(ΦK(M)) and

similarly for ΨK.
(3) There are injective maps idRep(O)→ ΦKΨK and idRep

FI
(2)
→ΨKΦK. Since length can’t

go up, the map M→ΨKΦKM is an isomorphism if M is finite length.

We omit discussion of monoidal structure. �
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The simple objects of Rep(O) are the irreducible representations Mλ of Σn where n = |λ|.

The image of Mλ in K must land in the intersection of the kernels of V⊗n→ V⊗(n−2) (call this

V
⊗n
0 ).

Lemma 5.4. S[λ]V := HomΣn
(Mλ,V

⊗n
0 ) is a simple object of Rep(O). Furthermore, S[λ]V and

S[µ]V are isomorphic if and only if λ = µ.

Proof. When dimV < ∞, a classical construction of Weyl says that HomΣn
(Mλ,V

⊗n
0 ) is an

irreducible representation of O(V) provided it is nonzero. We omit the technical details. �

An analogy: finite length algebraic representations of O(∞) play the role of polynomial

functors and FI
(2) plays the role of FB: so K provides a generalized Schur–Weyl duality.

There are two versions of Schur–Weyl duality for O(V) when dimV <∞. The first we have
seen:

V
⊗n
0 =

⊕

λ

Mλ ⊠S[λ]V (Σn ×O(V)-equivariant)

The second involves the Brauer algebra Bd,n (d = dimV). Objects are perfect matchings on
[n]∐ [n] represented pictorially as (for n = 6):

Γ =

• • • • • •

• • • • • •

Γ
′ =

• • • • • •

• • • • • •

The product is obtained via top-down concatenation. For each loop, multiply by d :
• • • • • •

• • • • • •

• • • • • •

→ d

• • • • • •

• • • • • •

= ΓΓ
′

The second version of Schur–Weyl duality is

V
⊗n =

⊕

λ

Nλ ⊠S[λ]V (Bd,n ×O(V)-equivariant)

where Nλ are irreducibles of Bd,n.

Note that FI(2) is built out of Brauer-like diagrams.

There is a similar story with the symplectic group. Also with FI: the orthogonal group is
replaced by the general affine group (this is the stabilizer of a nonzero linear map V → C

sending ei 7→ δ1,i ).

5.2. Next steps. The equivalence ΦK gives some handle on the finite length modules of A =
Sym(Sym2

C∞).
Thinking geometrically, the space of infinite symmetric matrices is stratified by rank. Let

Mod≤rA be the category of finitely generated modules set-theoretically supported on the rank r

locus. These modules are bounded and the quotients Mod≤rA /Mod≤r−1A seem to behave well
(we have just described the case r = 0).
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