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Basic theme: there are many “axes” in commutative algebra which
are governed by algebraic structures

• (obvious) If M is a graded module, consider Mi as i varies

• TorRi (M, k)∗ as i varies; module over Ext algebra

• (vague) M(n) module over algebra A(n) — for special classes,
have compatibilities between A(n) and A(n′) and between
M(n) and M(n′).
(sources: Hilbert scheme of n points in A2, moduli space of n
points on P1, equivariant pure free resolutions over
C[x1, . . . , xn], etc.)

Today’s talk: some structures arising from (secants of) Segre
embeddings and finiteness theorems arising from them
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Work of Draisma–Kuttler

Theorem (Draisma–Kuttler)

Fix r . There is a constant d(r) so that the rth secant variety of a
Segre embedding is set-theoretically defined by equations of degree
≤ d(r).

Alternatively: “Bounded rank tensors are cut out by bounded
degree equations”

The main point: it doesn’t matter how many projective spaces we
take or what their dimensions are – we can find d(r) that works for
all of them!

Examples: d(1) = 2, d(2) = 3 (Landsberg–Manivel, Raicu),
d(3) = 4 (Yang Qi), d(4) ≥ 9 (Strassen)
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Infinite-dimensional tensors

First step: given r , it suffices to work with projective spaces of
some dim. n − 1 (depending only on r).
Fix vector space V of dim. n and functional ϕ : V → k. Define

V⊗p → V⊗(p−1)

v1 ⊗ · · · ⊗ vp 7→ ϕ(vp)v1 ⊗ · · · ⊗ vp−1.

Set V⊗∞ = limp V
⊗p.

Two subvarieties of interest in V⊗p:
X≤r
p : r th secant variety of Segre

Y≤r
p : flattening variety — tensors such that all flattenings (into

matrices) have rank at most r

Set X≤r
∞ = limp X

≤r
p and Y≤r

∞ = limp Y
≤r
p .

Then X≤r
∞ ⊆ Y≤r

∞ .
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Some symmetries

There is more structure on X≤r
∞ and Y≤r

∞ : the group
Gp := Sp ⋉ GL(V )p acts on V⊗p and preserves X≤r

p and Y≤r
p .

There are natural embeddings Gp ⊂ Gp+1 compatible with our
inverse system, so G∞ =

⋃
p Gp acts on V⊗∞ and preserves X≤r

∞

and Y≤r
∞ .

Theorem (Draisma–Kuttler)

Y≤r
∞ ⊂ V⊗∞ is cut out by finitely many G∞-orbits of polynomials

(certain determinants of size r + 1).
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Noetherian up to symmetry

Let Π be a monoid acting on a topological space X . Then X is
Π-Noetherian if every descending chain of Π-stable closed subsets
X0 ⊇ X1 ⊇ X2 ⊇ · · · eventually stabilizes.

If X is a Π-Noetherian variety, then every Π-stable subvariety is cut
out set-theoretically by finitely many Π-orbits of equations.

Theorem (Draisma–Kuttler)

Y≤r
∞ is G∞-Noetherian.

Combining this with the previous result, we get

Theorem

X≤r
∞ ⊂ V⊗∞ is cut out set-theoretically by finitely many G∞-orbits

of equations. In particular, there is a finite bound on their degrees.
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Equations of Segre embeddings

How about ideals? Look to Segre embeddings for motivation.

The simplest Segre embedding:

P1 × P1 ⊂ P3

Interpretation: 2× 2 matrices of rank ≤ 1, so cut out by single
determinant equation x11x12 − x12x21.

More convenient to write this as

P(V1)× P(V2) ⊂ P(V1 ⊗ V2)

where dim(V1) = dim(V2) = 2.
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Two ways to get equations from smaller Segres:

• Flattening (reduce number of projective spaces):

P(V1)× · · · × P(Vn)× P(Vn+1) ⊂ P(V1)× · · · × P(Vn ⊗ Vn+1)

⊂ P(V1 ⊗ · · · ⊗ (Vn ⊗ Vn+1))

(can be done in many ways)

• Functoriality (reduce dimensions of projective spaces). Given
Vi → V ′

i , have

P(V1)× · · · × P(Vn) //

��
�

�

�

P(V1 ⊗ · · · ⊗ Vn)

��
�

�

�

P(V ′
1)× · · · × P(V ′

n) // P(V ′
1 ⊗ · · · ⊗ V ′

n)

In both cases, can pullback equations. Basic observation: all
equations can be generated from the 2× 2 determinant using these
operations.
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∆-modules

∆-modules axiomatize the two operations (flattening and
functoriality) that we have just seen. We define them shortly.

The previous discussion can be summarized as: the equations of
the Segre embedding is a principal ∆-module (generated by 1
element)

We understand the equations quite well, but ∆-modules apply to
other situations:

• Any family of varieties closed under flattening and functoriality
fit in the framework. The set of such families is closed under
join and taking tangents (so includes higher secants and
tangential varieties of Segres — poorly understood!)

• They extend beyond equations to arbitrary order syzygies
(more precisely, higher Tor groups of Segre embeddings —
poorly understood!)
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An abstract approach is cleanest. Fix a field k.
Let Vec∆ be the following category:

• Objects are pairs (I , {Vi}i∈I ), I a finite set and Vi a
finite-dimensional vector space.

• A morphism (I , {Vi}) → (J, {Wj}) is a surjection f : J → I
together with linear maps Vi →

⊗
j∈f −1(i)Wj .

Intuition: the surjection f encodes flattenings and the linear maps
encode functoriality.

Definition

A ∆-module is a polynomial functor Vec∆ → Vec.

(Intuitively, polynomial just means that morphisms transform like
polynomial functions.)
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Examples of ∆-modules

• Tautological example: (I , {Vi}) 7→
⊗

i∈I Vi

• Ambient space: R : (I , {Vi}) 7→ Sym•(
⊗

i∈I Vi )

• Segre: S : (I , {Vi}) 7→
⊕

d≥0(
⊗

i∈I Sym
d(Vi ))

• Tor modules: Ti : (I , {Vi}) 7→ Tor
R(I ,{Vi})
i (k, S(I , {Vi})).

• coordinate rings of secants, tangents, ...

• Tor modules of secants, tangents, ...
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Finite generation

A ∆-module is a polynomial functor F : Vec∆ → Vec.

An element of F is an element x ∈ F (I , {Vi}) for some object
(I , {Vi}) ∈ Vec

∆.

The submodule of F generated by a collection of elements is the
smallest submodule containing all of them.

F is finitely generated if it can be generated by finitely many
elements.

Theorem (Sam–Snowden)

Tor modules of Segre embeddings are finitely generated
∆-modules.

Originally proven by Snowden in characteristic 0.
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Noetherian property

F is Noetherian if every submodule is finitely generated.

Theorem (Sam–Snowden)

Finitely generated ∆-modules are Noetherian. In particular, they
have resolutions by finitely generated projective ∆-modules.

The first part was originally proven by Snowden in characteristic 0
under further assumptions.

So the following result seems to be new, even in characteristic 0:

Theorem (Sam–Snowden)

Tor modules of Segre embeddings are finitely presented ∆-modules.
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Lingering questions

• Fix r . Are the equations of the r th secant variety of the Segre
embedding a finitely generated ∆-module?

It can be shown that, for fixed d , the degree d equations form
a finitely generated ∆-module, so we are asking: is the ideal
defined by equations of bounded degree (stronger property
than provided by Draisma–Kuttler).

• How about the Tor modules? If we know that the equations
of the r th secant variety of the Segre are defined in bounded
degree, does this imply the same for all higher Tor modules?

For the Segre, this follows from the existence of a quadratic
Gröbner basis.

• Analogy: ∆-modules are like vector spaces and we really want
to study ∆-algebras like (I , {Vi}) 7→ Sym(

⊗
i∈I Vi ).
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New commutative algebra

• Hilbert series: Use characters of the general linear group to
encode a ∆-module into a Hilbert series. We can show that
they are rational functions.

• Regularity: Minimal projective resolutions are tricky to define
due to the action of general linear groups. 2 ways to fix this:

• work in char. 0 where representation theory is semisimple,
• modify the category so that group actions don’t appear

After fixing this, we can define Castelnuovo–Mumford
regularity. Is it finite?

• Krull dimension: Gabriel defined Krull dimension objects in
any Abelian category A: the zero object has Kdim −1. Let
A≤d be the subcategory of objects of Kdim ≤ d . An object
has Kdim ≤ d + 1 if its image in A/A≤d has finite length.
Can we compute this for ∆-modules? Is it connected to
combinatorial properties of Hilbert series?
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