
Gröbner bases, formal languages, and applications

Steven Sam

University of California, Berkeley

September 20, 2014

See also: “Directions in Commutative Algebra: Past, Present,
Future II”, 4:30pm - 5:15pm

1 / 12

Theme of the talk:

• Reduction of algebraic problems to combinatorial problems

• Combinatorial tools: Gröbner bases and formal languages

Examples:

• Hilbert basis theorem (Let k be a field. Every ideal in
A = k[x1, . . . , xn] is finitely generated.)
follows from
Dixon’s lemma (The poset Zn

≥0 under termwise comparison
contains no infinite antichains.)

• “Finitely generated A-modules have rational Hilbert series”
follows from
“Every regular language has a rational generating function”
(A stronger statement can be made in this case, but let’s
minimize technicalities)

Let’s sketch this now...

2 / 12

Gröbner bases

A term order is an ordering of monomials in k[x1, . . . , xn] so that

• no infinite descending chains

• m < m′ implies nm < nm′

For f ∈ k[x1, . . . , xn] define init(f) to be its maximal monomial
and for an ideal I , let init(I) be the k-span of init(f) for f ∈ I .

Basic properties:

• A generating set for init(I) gives one for I

• For I homogeneous, I and init(I) have same Hilbert series

So we have reduced problem to monomial ideals

3 / 12

• If I is a monomial ideal with infinite generating set m1,m2, . . .

so that no mi divides any other mj , then their exponents
would be an infinite antichain in Zn

≥0; now use Dixon’s lemma

• A degree d monomial in n variables can be encoded as a
sequence of “stars and bars” with n − 1 “bars” and d “stars”,
e.g., x32x

2
3x5 ↔ | ∗ ∗ ∗ | ∗ ∗||∗

This is a regular language on the alphabet {∗, |}, i.e., can be
encoded as the set of walks in a weighted graph, so has a
rational generating function

4 / 12

Generalizations

Want to apply this strategy to other algebraic structures to get
analogues of Hilbert basis theorem and rationality of Hilbert series.

The modules M =
⊕

i≥0Mi will be Z≥0-graded vector spaces
together with collections of operations Mi → Mj which may
depend on i and j .

So there is an intuitive notion of submodules, finite generation,
and Hilbert series.

This is most cleanly packaged as follows: C is a category whose
isomorphism classes are given by nonnegative integers and M is a
functor from C to k-vector spaces. Then Mi will be the value of M
evaluated on the isoclass corresponding to i .

Call them C-modules.

5 / 12

Some examples:

• C = FI is the category of finite sets and injective maps. So
there is one operation Mi → Mj for each injection [i] → [j].

• C = FSop is the opposite of the category of finite sets and
surjective maps. So there is one operation Mi → Mj for each
surjection [j] → [i].

• C = VI(Fq) is the category of finite-dimensional Fq-vector
spaces and injective linear maps. So there is one operation
Mi → Mj for each injection Fi

q → F
j
q.

• G -sets, weighted sets, colored injections, symplectic vector
spaces, etc.

All of these can be analyzed with generalizations of Gröbner bases
using the strategy we just outlined.

6 / 12

Basic idea

For each i , there is a “free” C-module P(i) with

P(i)j = k[HomC(i , j)].

Intuitively, P(i)j is the set of all operations that get you from Mi

to Mj , so for any choice of element x ∈ Mi one can define a map
P(i) → M.

These spaces have distinguished bases, which we should think of as
monomials.

(Technically, we can’t define term orders because of the existence
of finite-order invertible operators: e.g., if g2 = 1 then g < 1
would imply 1 < g and vice versa. This can be fixed, but I won’t
go into it.)

7 / 12

Surjections

Let’s focus on one example. Let C = FSop be the opposite of the
category of finite sets and surjective maps.

Theorem (Sam–Snowden)

Let M be a finitely generated C-module.

• Every submodule of M is also finitely generated.

• The Hilbert series
∑

i≥0 dimk(Mi)t
i is a rational function in t.

We finish with two applications of this in topology and algebraic
geometry.

8 / 12

Lannes–Schwartz artinian conjecture

Let C = Vec(Fq) be the category of finite-dimensional Fq-vector
spaces and k = Fq.

Theorem (Putman, Sam, Snowden)

Submodules of finitely generated C-modules are finitely generated.

This follows from the previous result and also from joint work with
Andy Putman.

This was conjectured by Jean Lannes and Lionel Schwartz. Their
interest comes from a connection of these modules with unstable
modules over the Steenrod algebra.

9 / 12

Syzygies of Segre embeddings

Let P(V) be the projectivization of a vector space V .
The Segre embedding is the map

P(V1)× · · · × P(Vn) → P(V1 ⊗ · · · ⊗ Vn)

([v1], . . . , [vn]) 7→ [v1 ⊗ · · · ⊗ vn].

Three ways to get equations that vanish on the image:
1. Reduce from n to n − 1 by considering the composition

P(V1)× · · · × P(Vn−1)× P(Vn) → P(V1)× · · · × P(Vn−1 ⊗ Vn)

→ P(V1 ⊗ · · · ⊗ Vn)

2. Permute factors
3. Use linear maps Vi → V ′

i .

10 / 12

These operations also extend to other things like higher syzygies
(call this Tori)

This was formalized by Snowden in the notion of a ∆-module.
See my 4:30 talk for more details.

But 1. and 2. are similar to the operations given by C = FSop.
This can made rigorous; intuitively the result is:

Theorem (Sam–Snowden)

For each i , there is a finite list of Segre embeddings whose Tori
groups allow one to build all others under operations 1., 2., and 3.

This was previously shown by Snowden when k is a field of
characteristic 0 using specialized representation theory.

The combinatorial (Gröbner) approach ends up being simpler and
more general.

11 / 12

A question

I didn’t elaborate on this point, but the connection to formal
languages comes from the fact that the morphisms/operations can
always be encoded in a “linear way” so that they form a regular
language.

There are some more examples of categories C that we’d like to
consider where the morphisms don’t have a linear structure, but
rather some kind of graphical structure.

Example: The objects of C are ordered finite sets [0], [1], [2],
A morphism [i] → [j] is an increasing function f : [i] → [j] together
with a perfect matching on [j] \ f ([i]).

Is there some notion of “graphical language” which could encode
things like this? I expect that well-behaved graphical languages
have D-finite generating functions.

12 / 12

