"Gröbner methods for generic representation theory and the artinian conjecture"

GDR conference: Algebraic topology and applications

Clermont-Ferrand, October 22, 2014

Steven Sam (joint with Andrew Putman, Andrew Snowden)

1. Definitions

Lannes-Schwartz artinian conjecture:

Theorem 1.1 (Putman, Sam, Snowden). Let \mathbf{F}_q be a finite field and let $\operatorname{Vec}_{\mathbf{F}_q}$ be the category of finite-dimensional vector spaces. Every finitely generated functor $\operatorname{Vec}_{\mathbf{F}_q} \to \operatorname{Vec}_{\mathbf{F}_q}$ is noetherian.

Some definitions:

Let \mathcal{C} be a category with set of isoclasses $|\mathcal{C}|$ and \mathbf{k} a ring. A functor $F \colon \mathcal{C} \to \operatorname{Mod}_{\mathbf{k}}$ can be encoded as a graded \mathbf{k} -module $\bigoplus_{x \in |\mathcal{C}|} F(x)$ with operations coming from morphisms in \mathcal{C} :

$$\mathbf{k}[\operatorname{Hom}_{\mathfrak{C}}(x,y)] \otimes F(x) \to F(y).$$

A **subfunctor** of *F* is a graded submodule closed under these operations.

Given subset $S \subset \bigoplus F(x)$, the subfunctor generated by S is smallest subfunctor containing S. F is **finitely generated** if it has a finite generating set.

F is **noetherian** if every subfunctor of *F* is finitely generated.

2. Motivation

Let $\mathcal{F}(q)$ be category of functors $\operatorname{Vec}_{\mathbf{F}_q} \to \operatorname{Vec}_{\mathbf{F}_q}$.

For vector space V, get projective $P_V \in \mathcal{F}(q)$ given by $W \mapsto \mathbf{F}_q[\text{Hom}(V, W)]$

Finite generation is equivalent to being a quotient of $P_{V_1} \oplus \cdots \oplus P_{V_r}$.

Noetherian is equivalent to every finitely generated object having projective resolution by finitely generated P_V .

(This is useful since various subcategories have come up:)

2.1. **Steenrod algebra**. For simplicity, q = p is prime.

Let $\mathcal{F}_{\omega}(q)$ be the subcategory of locally finite functors $\operatorname{Vec}_{\mathbf{F}_q} \to \operatorname{Vec}_{\mathbf{F}_q}$ (i.e., union of its finite length subfunctors).

Let A be mod. p Steenrod algebra and let $\mathcal U$ be the category of unstable A-modules. There is a functor

$$f: \mathcal{U} \to \mathcal{F}_{\omega}(p)$$

 $M \mapsto (V \mapsto \operatorname{Hom}_{\mathcal{U}}(M, \operatorname{H}^* \operatorname{B} V)')$

(' is continuous dual) which induces an equivalence $\mathcal{U}/\mathcal{N} \simeq \mathcal{F}_{\omega}(p)$. Here $\mathcal{N} = \{x \in \mathcal{U} \mid f(x) = 0\}$ is the category of nilpotent modules. (Result of Henn, Lannes, Schwartz)

2.2. **Cohomology**. Pirashvili identified $\operatorname{Tor}_*^{\mathcal{F}(q)}(\operatorname{id},\operatorname{id})$ with the topological Hochschild homology of \mathbf{F}_q , so general Tor (or Ext) can be interpreted as THH with twisted coefficients.

Theorem 2.1 (Betley, Suslin). For finite length F and F',

$$\operatorname{Ext}^*_{\mathcal{F}(q)}(F,F') \cong \operatorname{Ext}^*_{\operatorname{\mathbf{GL}}_k(\mathbf{F}_q)}(F(\mathbf{F}_q^k),F'(\mathbf{F}_q^k))$$

for $k \gg 0$.

3. Proof idea: Gröbner degenerations

Goal: given $\mathcal C$ and k, how to prove that $\mathcal C$ is noetherian? i.e., show f.g. functors $\mathcal C \to \mathsf{Mod}_k$ are noetherian?

General strategy:

- To prove that f.g. functors $\mathcal{C} \to \operatorname{Mod}_{\mathbf{k}}$ are noetherian, enough to do so for projectives $P_x \colon y \mapsto \mathbf{k}[\operatorname{Hom}_{\mathcal{C}}(x,y)]$ since they generate the category.
- A set S of morphisms $\{x \to z_i\}$ generates a subfunctor of P_x called a **monomial subfunctor**.
- In many instances, it is easy to prove that monomial subfunctors are f.g. (this becomes a combinatorial problem)
- Want to reduce study of subfunctors to monomial subfunctors. General technique: Gröbner degenerations (borrowed from commutative algebra / algebraic geometry)

The idea is that morphisms $f: x \to z$ are monomials in P_x , and so given a **term** ordering < on monomials, can define initial terms

$$\operatorname{init}(\sum a_f \cdot f) = \max\{f \mid a_f \neq 0\}$$

and initial subfunctors

$$init(M) = \mathbf{k}\{init(f) \mid f \in M\}.$$

But < should satisfy strong property: f < g implies hf < hg.

Problem: for $C = Vec_{\mathbf{F}_q}$, most morphisms differ by an automorphism, so there aren't many monomial submodules.

There is a further reduction technique: Given

$$\Phi \colon \mathcal{C}' \to \mathcal{C}$$

can pullback functors.

If we assume that pullback Φ^* preserves finite generation and Φ is essentially surjective, then we can reduce problem to showing \mathcal{C}' is noetherian.

For $\mathcal{C} = \mathrm{Vec}_{\mathbf{F}_q}$, define \mathcal{C}' to be the category whose objects are ordered finite sets and a morphism $S \to T$ is a surjection $f: T \to S$ satisfying $\min f^{-1}(i) < \min f^{-1}(j)$ for $i < j \in S$.

Define $\Phi(S) = \operatorname{Hom}_{\mathbf{F}_q}(\mathbf{F}_q[S], \mathbf{F}_q)$; exercise to show Φ preserves finite generation.

Now \mathcal{C}' has many monomial modules (note its automorphism groups are trivial) and can carry out Gröbner degeneration program.

Remark 3.1. Previous work on finiteness of functor categories relied on *polynomial* property, i.e., focused on functors annihilated by certain shift operator. This works for category of finite sets and injections (Church, Ellenberg, Farb, Nagpal) but cannot address larger functors.

4. Applications: Homological stability

The same ideas apply to similar contexts.

Let *R* be a commutative ring.

 VIC_R is category of finite rank free R-modules; a morphism $V \to W$ is a pair of maps $V \to W \to V$ whose composition is identity.

 \mathbf{SI}_R is category of finite rank free symplectic R-modules; morphism $V \to W$ is an injection compatible with forms.

Theorem 4.1 (Putman, Sam). Let k be commutative noetherian ring and assume R is finite. Finitely generated VIC_R and SI_R -modules are noetherian.

Corollary 4.2 (Putman, Sam). Let k be commutative noetherian ring and assume R is finite.

Let $F: \mathbf{VIC}_R \to \mathbf{Mod_k}$ be finitely generated. Then for each $i \geq 0$, $H_i(\mathbf{GL}_n(R); F(R^n))$ is independent of n for $n \gg 0$.

Let $F: \mathbf{SI}_R \to \mathrm{Mod}_{\mathbf{k}}$ be finitely generated. Then for each $i \geq 0$, $H_i(\mathbf{Sp}_{2n}(R); F(R^{2n}))$ is independent of n for $n \gg 0$.

Some more applications:

Let *K* be a number field, \mathcal{O}_K its ring of integers, pick nonzero ideal $\alpha \subset \mathcal{O}_K$.

It is known that homology of $\mathbf{Sp}_{2n}(\mathcal{O}_K)$ stabilizes for large n, but not for *congruence subgroups*. Define group-valued functor on $\mathbf{SI}_{\mathcal{O}_K}$ by $V \mapsto \mathbf{Sp}(\alpha, V)$ where $\mathbf{Sp}(\alpha, V)$ is kernel of $\mathbf{Sp}(V) \to \mathbf{Sp}(V \otimes_{\mathcal{O}_K} \mathcal{O}_K/\alpha)$.

Use this to define functor

$$\mathcal{H}_i(\alpha, \mathbf{k}) \colon \mathbf{SI}_{\mathcal{O}_K/\alpha} \to \mathbf{Mod}_{\mathbf{k}}$$

$$V \mapsto \mathbf{H}_i(\mathbf{Sp}(\alpha, V); \mathbf{k})$$

Theorem 4.3 (Putman, Sam). $\mathcal{H}_i(\alpha, \mathbf{k})$ is finitely presented. In particular, the *i*th homology of $\mathbf{Sp}(\alpha, \mathcal{O}_K^{2n})$ admits a finite description as we vary over all n.

There are similar results for congruence subgroups of $\mathbf{GL}_n(\mathcal{O}_K)$ but more notation needed. Also can make statements for congruence subgroups for mapping class groups and automorphism groups of free groups.