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1. Definitions

Lannes–Schwartz artinian conjecture:

Theorem 1.1 (Putman, Sam, Snowden). Let Fq be a finite field and let VecFq be the category of
finite-dimensional vector spaces. Every finitely generated functor VecFq → VecFq is noetherian.

Some definitions:
Let C be a category with set of isoclasses |C| and k a ring. A functor F : C→Modk can be

encoded as a graded k-module
⊕

x∈|C|F(x) with operations coming from morphisms in C:

k[HomC(x,y)]⊗F(x)→ F(y).

A subfunctor of F is a graded submodule closed under these operations.
Given subset S ⊂

⊕
F(x), the subfunctor generated by S is smallest subfunctor containing

S . F is finitely generated if it has a finite generating set.
F is noetherian if every subfunctor of F is finitely generated.

2. Motivation

Let F(q) be category of functors VecFq → VecFq .
For vector space V , get projective PV ∈ F(q) given by W 7→ Fq[Hom(V ,W )]
Finite generation is equivalent to being a quotient of PV1

⊕ · · · ⊕ PVr
.

Noetherian is equivalent to every finitely generated object having projective resolution by
finitely generated PV .

(This is useful since various subcategories have come up:)

2.1. Steenrod algebra. For simplicity, q = p is prime.
Let Fω(q) be the subcategory of locally finite functors VecFq → VecFq (i.e., union of its finite

length subfunctors).
Let A be mod. p Steenrod algebra and let U be the category of unstable A-modules. There

is a functor

f : U→ Fω(p)

M 7→ (V 7→HomU(M,H∗BV )′)

(′ is continuous dual) which induces an equivalence U/N ≃ Fω(p). Here N = {x ∈ U | f (x) = 0}
is the category of nilpotent modules. (Result of Henn, Lannes, Schwartz)

2.2. Cohomology. Pirashvili identified TorF(q)∗ (id, id) with the topological Hochschild homol-
ogy of Fq, so general Tor (or Ext) can be interpreted as THH with twisted coefficients.

Theorem 2.1 (Betley, Suslin). For finite length F and F′,

Ext∗F(q)(F,F
′) � Ext∗GLk(Fq)

(F(Fkq),F
′(Fkq))

for k≫ 0.
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3. Proof idea: Gröbner degenerations

Goal: given C and k, how to prove that C is noetherian? i.e., show f.g. functors C→Modk
are noetherian?

General strategy:
• To prove that f.g. functors C→ Modk are noetherian, enough to do so for projectives
Px : y 7→ k[HomC(x,y)] since they generate the category.
• A set S of morphisms {x → zi} generates a subfunctor of Px called a monomial sub-
functor.
• In many instances, it is easy to prove that monomial subfunctors are f.g. (this becomes a
combinatorial problem)
• Want to reduce study of subfunctors to monomial subfunctors. General technique: Gröb-
ner degenerations (borrowed from commutative algebra / algebraic geometry)

The idea is that morphisms f : x → z are monomials in Px, and so given a term
ordering < on monomials, can define initial terms

init(
∑

af · f ) = max{f | af , 0}

and initial subfunctors

init(M) = k{init(f ) | f ∈M}.
But < should satisfy strong property: f < g implies hf < hg .

Problem: for C = VecFq , most morphisms differ by an automorphism, so there aren’t many
monomial submodules.

There is a further reduction technique: Given

Φ : C′→ C,

can pullback functors.
If we assume that pullback Φ∗ preserves finite generation and Φ is essentially surjective, then

we can reduce problem to showing C′ is noetherian.
For C = VecFq , define C′ to be the category whose objects are ordered finite sets and a

morphism S→ T is a surjection f : T → S satisfying minf −1(i) <minf −1(j) for i < j ∈ S .
Define Φ(S) = HomFq(Fq[S],Fq); exercise to show Φ preserves finite generation.
Now C′ has many monomial modules (note its automorphism groups are trivial) and can

carry out Gröbner degeneration program.

Remark 3.1. Previous work on finiteness of functor categories relied on polynomial property, i.e.,
focused on functors annihilated by certain shift operator. This works for category of finite sets
and injections (Church, Ellenberg, Farb, Nagpal) but cannot address larger functors. □

4. Applications: Homological stability

The same ideas apply to similar contexts.
Let R be a commutative ring.
VICR is category of finite rank free R-modules; a morphism V → W is a pair of maps

V →W → V whose composition is identity.
SIR is category of finite rank free symplectic R-modules; morphism V →W is an injection

compatible with forms.
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Theorem 4.1 (Putman, Sam). Let k be commutative noetherian ring and assume R is finite.
Finitely generated VICR and SIR-modules are noetherian.

Corollary 4.2 (Putman, Sam). Let k be commutative noetherian ring and assume R is finite.
Let F : VICR→Modk be finitely generated. Then for each i ≥ 0, Hi(GLn(R);F(Rn)) is indepen-

dent of n for n≫ 0.
Let F : SIR→Modk be finitely generated. Then for each i ≥ 0, Hi(Sp2n(R);F(R

2n)) is indepen-
dent of n for n≫ 0.

Some more applications:
Let K be a number field, OK its ring of integers, pick nonzero ideal α ⊂ OK .
It is known that homology of Sp2n(OK ) stabilizes for large n, but not for congruence subgroups.
Define group-valued functor on SIOK

by V 7→ Sp(α,V ) where Sp(α,V ) is kernel of Sp(V )→
Sp(V ⊗OK

OK /α).
Use this to define functor

Hi(α,k) : SIOK /α→Modk

V 7→Hi(Sp(α,V );k)

Theorem 4.3 (Putman, Sam). Hi(α,k) is finitely presented. In particular, the ith homology of
Sp(α,O2n

K ) admits a finite description as we vary over all n.

There are similar results for congruence subgroups of GLn(OK ) but more notation needed.
Also can make statements for congruence subgroups for mapping class groups and automor-

phism groups of free groups.
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