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1. MOTIVATING EXAMPLE: DETERMINANTAL VARIETIES

• E,F are k-vector spaces of dimensions e, f , assume e ≥ f .

• X =Hom(E,F) affine space of linear maps E → F

• A =Sym(E⊗F∗) = coordinate ring of X .

• X (r) = subvariety of rank ≤ r matrices

• A(r) = coordinate ring of X (r)

Problem: Calculate minimal free resolution F(r)• of A(r) over A

Alternatively, calculate TorA
• (A(r),k)=F(r)⊗A k.

Some history:

• Auslander–Buchsbaum (1957): A/I Cohen–Macaulay iff TorA
j (A/I,k) = 0 for all j >

codimV (I)

• Eagon–Northcott (1962): constructed F( f − 1)•. In particular, A( f − 1) is Cohen–

Macaulay.

• Eagon–Hochster (1971): showed A(r) is Cohen–Macaulay for all r.

• Kempf (1973): gave geometric construction of F( f −1)•.

Work on X ×P(F)=: ε. Have short exact sequence on P(F):

0→R → F ⊗OP(F) →O (1)→ 0, (R =Ω
1
P(F)(1))

ε has subvariety Z = total space of H om(E,R). Its image under Z → ε
π
−→ X is X ( f −1).

Z is cut out by a section of H om(E,O (1)) so get Koszul complex:

· · ·→Oε⊗

2
∧

E⊗O (−2)→Oε⊗E⊗O (−1)→Oε →OZ → 0.

Check: Ri
π∗OZ = 0 for i > 0.

So derived projection formula gives

TorA
i (A( f −1),k)=

⊕

j≥0

H j(P(F);
i+ j
∧

E⊗O (−i− j))

=

{

k if i = 0
∧i+ f−1 E⊗

∧ f F∗⊗Symi−1(F)∗ if 1≤ i ≤ e− f +1
.

Lascoux (1978) extended Kempf’s construction to calculate TorA
i (A(r),Q) for all r. We

replace P(F) with Grassmannian and need Borel–Weil–Bott theorem (hence restriction to

char. 0)

Main idea: X (r), A(r) are functorial in E,F. In particular, have action of GL(E)×GL(F).

Remarks:
1



2

(1) In general, Betti numbers depend on char., but not known in general. They are inde-

pendent of char. iff r ≥ f −3 or r = 0 (Eagon–Northcott, Akin–Buchsbaum–Weyman,

Hashimoto)

(2) By functoriality, can replace E,F by vector bundles. This has geometric applications

to equations/syzygies of curves (e.g., Gruson–Lazarsfeld–Peskine, Schreyer)

2. TWISTED COMMUTATIVE ALGEBRAS

Guiding question: How does equivariance force simple behavior? Or how can we exploit

it in a useful way?

Work over field of char. 0.

Let Vec be the category of vector spaces

Intuitively, a twisted commutative algebra is a nice functor from Vec to commutative rings

An endofunctor of Vec is polynomial if it is a subquotient of a direct sum of functors

V 7→V⊗d (category of endofunctors of Vec is Abelian). Let Pol be the category of polynomial

functors.

This includes symmetric and exterior powers and Schur functors Sλ (labeled by integer

partitions λ):

There is a natural action of symmetric group Σd on V⊗d and the multiplicity spaces are

functorial in V and called Schur functors (evaluated on V ).

Pol has a tensor structure: (F ⊗G )(V ) :=F (V )⊗G (V ).

A tca A is a commutative algebra in (Pol,⊗), i.e., A ⊗A →A such that ...

An A -module is M with A ⊗M →M such that ...

M is f.g. if it is a quotient of A ⊗V for some finite length V ∈ Pol.

Examples:

(1) Fix F. Set E 7→Sym(E⊗F). Call this tca Sym(F〈1〉).

(2) E 7→ A( f −1), which is quotient of Sym(F〈1〉).

(3) Fix d. Then E 7→ coordinate ring of Grassmannian Gr(d,E). etc.

Set ℓ(λ)=max{r |λr 6= 0} and ℓ(
⊕

λ∈I Sλ)=maxℓ(λ), so ℓ defined on Pol.

Fact: ℓ(F ⊗G )= ℓ(F )+ℓ(G ).

An object M of Pol is bounded if ℓ(M )<∞.

If A is bounded tca, and M is f.g. A -module, then M is bounded.

If dimV ≥ ℓ(M ), have bijection

{A -submodules of M }∼= {GL(V )-invariant A (V )-submodules of M (V )}

Conclusion: if A is a bounded tca and A (W) Noetherian for dimW ≥ ℓ(A ), then f.g. A -

modules are Noetherian.

Example: Sym(F〈1〉)∼= (
⊕

d≥0 Symd)⊗ f is bounded. (Symd =Sd so ℓ(Symd)= 1)
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3. SOME PROBLEMS

All tca’s generated in degree 1 are bounded.

tca’s generated in degree 2 can be unbounded, e.g.,

E 7→Sym(Sym2(E)) and E 7→Sym(
2
∧

(E)).

Problems:

(1) Is every f.g. Sym(
∧2)-module Noetherian?

(2) Does Sym(
∧3) have ascending chain condition for ideals? How about just for prime

ideals?

4. FI-MODULES

Given sequence of Σn-representations (Mn)n, get element of Pol defined by

V 7→
⊕

n

(Mn ⊗V⊗n)Σn
.

Schur–Weyl duality: this is an equivalence between Pol and sequences of Σn-representations

(this is char. 0 phenomena)

⊗ in Pol becomes induction product:

(M⊗N)n =
⊕

i+ j=n

Ind
Σn

Σi×Σ j
(Mi ⊠N j)

Let FI be category of finite sets with injections as morphisms. FI-module (introduced by

Church–Ellenberg–Farb) is a functor FI → V ec. Under Schur–Weyl duality, an FI-module

becomes a module over Sym(C〈1〉).

Example:

• Let X be a smooth manifold. Let X (n) be configuration space of n ordered points on

X . For fixed i, (Hi(X (n))) is an FI-module (induced by forgetful maps). (It is f.g. if X

is connected, oriented, dim at least 2 by Church)

• Fix g ≥ 2. Mg,n = Deligne–Mumford moduli of genus g curves with n marked points.

Then Hi(Mg,n) is an FI-module. (This is f.g. by Jimenez Rolland)

5. ANOTHER MOTIVATION: SEGRE EMBEDDINGS

P(V1)×·· ·×P(Vr)⊂P(V1 ⊗·· ·⊗Vr)

Want to understand Tor as dim(Vi) vary and as r varies

tca’s not suitable to allow r to vary

Snowden introduced ∆-modules. Roughly this is a sequence of Σn-equivariant functors

Fn : V ec×n →V ec with maps

Fn(V1, . . . ,Vn−1,Vn ⊗Vn+1)→Fn+1(V1, . . . ,Vn,Vn+1).

For fixed i, {V1, . . . ,Vn 7→TorA
i (Segre,k) is a finitely generated ∆-module.

For fixed F and d ≫ 0, (Cd 7→ Fn(Cd, . . . ,Cd))n is a sequence of Σn-reps. Under Schur–

Weyl duality, get object of Pol. It is a f.g. module over a bounded tca, and was used to prove

“rationality” of Hilbert series.
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