Twisted commutative algebras Stony Brook University algebraic geometry seminar, October 2, 2013 Steven Sam (joint with Andrew Snowden)

1. MOTIVATING EXAMPLE: DETERMINANTAL VARIETIES

- E, F are **k**-vector spaces of dimensions e, f, assume $e \ge f$.
- X = Hom(E, F) affine space of linear maps $E \to F$
- $A = \text{Sym}(E \otimes F^*) = \text{coordinate ring of } X$.
- X(r) = subvariety of rank $\leq r$ matrices
- A(r) = coordinate ring of X(r)

Problem: Calculate minimal free resolution $\mathbf{F}(r)_{\bullet}$ of A(r) over A Alternatively, calculate $\operatorname{Tor}_{\bullet}^{A}(A(r),\mathbf{k}) = \mathbf{F}(r) \otimes_{A} \mathbf{k}$.

Some history:

- Auslander–Buchsbaum (1957): A/I Cohen–Macaulay iff $\operatorname{Tor}_{j}^{A}(A/I, \mathbf{k}) = 0$ for all $j > \operatorname{codim} V(I)$
- Eagon-Northcott (1962): constructed $\mathbf{F}(f-1)_{\bullet}$. In particular, A(f-1) is Cohen-Macaulay.
- Eagon–Hochster (1971): showed A(r) is Cohen–Macaulay for all r.
- Kempf (1973): gave geometric construction of $\mathbf{F}(f-1)_{\bullet}$.

Work on $X \times \mathbf{P}(F) =: \varepsilon$. Have short exact sequence on $\mathbf{P}(F)$:

$$0 \to \mathcal{R} \to F \otimes \mathcal{O}_{\mathbf{P}(F)} \to \mathcal{O}(1) \to 0, \qquad (\mathcal{R} = \Omega^1_{\mathbf{P}(F)}(1))$$

 ε has subvariety Z = total space of $\mathcal{H}om(E,\mathcal{R})$. Its image under $Z \to \varepsilon \xrightarrow{\pi} X$ is X(f-1). Z is cut out by a section of $\mathcal{H}om(E,\mathcal{O}(1))$ so get Koszul complex:

$$\cdots \to \mathcal{O}_{\varepsilon} \otimes \bigwedge^2 E \otimes \mathcal{O}(-2) \to \mathcal{O}_{\varepsilon} \otimes E \otimes \mathcal{O}(-1) \to \mathcal{O}_{\varepsilon} \to \mathcal{O}_Z \to 0.$$

Check: $R^i \pi_* \mathcal{O}_Z = 0$ for i > 0.

So derived projection formula gives

$$\begin{split} \operatorname{Tor}_i^A(A(f-1),\mathbf{k}) &= \bigoplus_{j \geq 0} \operatorname{H}^j(\mathbf{P}(F); \bigwedge^{i+j} E \otimes \mathcal{O}(-i-j)) \\ &= \begin{cases} \mathbf{k} & \text{if } i = 0 \\ \bigwedge^{i+f-1} E \otimes \bigwedge^f F^* \otimes \operatorname{Sym}^{i-1}(F)^* & \text{if } 1 \leq i \leq e-f+1 \end{cases}. \end{split}$$

Lascoux (1978) extended Kempf's construction to calculate $\operatorname{Tor}_i^A(A(r), \mathbf{Q})$ for all r. We replace $\mathbf{P}(F)$ with Grassmannian and need Borel–Weil–Bott theorem (hence restriction to char. 0)

Main idea: X(r), A(r) are functorial in E, F. In particular, have action of $GL(E) \times GL(F)$.

Remarks:

- (1) In general, Betti numbers depend on char., but not known in general. They are independent of char. iff $r \ge f 3$ or r = 0 (Eagon–Northcott, Akin–Buchsbaum–Weyman, Hashimoto)
- (2) By functoriality, can replace E, F by vector bundles. This has geometric applications to equations/syzygies of curves (e.g., Gruson–Lazarsfeld–Peskine, Schreyer)

2. Twisted commutative algebras

Guiding question: How does equivariance force simple behavior? Or how can we exploit it in a useful way?

Work over field of char. 0.

Let Vec be the category of vector spaces

Intuitively, a twisted commutative algebra is a nice functor from Vec to commutative rings

An endofunctor of Vec is **polynomial** if it is a subquotient of a direct sum of functors $V \mapsto V^{\otimes d}$ (category of endofunctors of Vec is Abelian). Let Pol be the category of polynomial functors.

This includes symmetric and exterior powers and Schur functors S_{λ} (labeled by integer partitions λ):

There is a natural action of symmetric group Σ_d on $V^{\otimes d}$ and the multiplicity spaces are functorial in V and called Schur functors (evaluated on V).

Pol has a tensor structure: $(\mathscr{F} \otimes \mathscr{G})(V) := \mathscr{F}(V) \otimes \mathscr{G}(V)$.

A **tca** \mathscr{A} is a commutative algebra in (Pol, \otimes) , i.e., $\mathscr{A} \otimes \mathscr{A} \to \mathscr{A}$ such that ... An \mathscr{A} -module is \mathscr{M} with $\mathscr{A} \otimes \mathscr{M} \to \mathscr{M}$ such that ...

 \mathcal{M} is f.g. if it is a quotient of $\mathcal{A} \otimes V$ for some finite length $V \in Pol$.

Examples:

- (1) Fix F. Set $E \mapsto \text{Sym}(E \otimes F)$. Call this tca $\text{Sym}(F \langle 1 \rangle)$.
- (2) $E \mapsto A(f-1)$, which is quotient of $Sym(F\langle 1 \rangle)$.
- (3) Fix d. Then $E \mapsto \text{coordinate ring of Grassmannian } \mathbf{Gr}(d, E)$. etc.

Set $\ell(\lambda) = \max\{r \mid \lambda_r \neq 0\}$ and $\ell(\bigoplus_{\lambda \in I} \mathbf{S}_{\lambda}) = \max \ell(\lambda)$, so ℓ defined on Pol.

Fact: $\ell(\mathscr{F} \otimes \mathscr{G}) = \ell(\mathscr{F}) + \ell(\mathscr{G})$.

An object \mathcal{M} of Pol is **bounded** if $\ell(\mathcal{M}) < \infty$.

If \mathscr{A} is bounded tca, and \mathscr{M} is f.g. \mathscr{A} -module, then \mathscr{M} is bounded. If $\dim V \ge \ell(\mathscr{M})$, have bijection

```
\{\mathcal{A}\text{-submodules of }\mathcal{M}\}\cong \{\mathbf{GL}(V)\text{-invariant }\mathcal{A}(V)\text{-submodules of }\mathcal{M}(V)\}
```

Conclusion: if \mathscr{A} is a bounded tca and $\mathscr{A}(W)$ Noetherian for dim $W \ge \ell(\mathscr{A})$, then f.g. \mathscr{A} -modules are Noetherian.

Example: $\operatorname{Sym}(F\langle 1 \rangle) \cong (\bigoplus_{d \geq 0} \operatorname{Sym}^d)^{\otimes f}$ is bounded. $(\operatorname{Sym}^d = \mathbf{S}_d \text{ so } \ell(\operatorname{Sym}^d) = 1)$

3. Some problems

All tca's generated in degree 1 are bounded. tca's generated in degree 2 can be unbounded, e.g.,

$$E \mapsto \operatorname{Sym}(\operatorname{Sym}^2(E))$$
 and $E \mapsto \operatorname{Sym}(\bigwedge^2(E))$.

Problems:

- (1) Is every f.g. $Sym(\wedge^2)$ -module Noetherian?
- (2) Does Sym(\wedge^3) have ascending chain condition for ideals? How about just for prime ideals?

4. FI-MODULES

Given sequence of Σ_n -representations $(M_n)_n$, get element of Pol defined by

$$V \mapsto \bigoplus_n (M_n \otimes V^{\otimes n})_{\Sigma_n}.$$

Schur–Weyl duality: this is an equivalence between Pol and sequences of Σ_n -representations (this is char. 0 phenomena)

⊗ in Pol becomes induction product:

$$(M\otimes N)_n=\bigoplus_{i+j=n}\operatorname{Ind}_{\Sigma_i\times\Sigma_j}^{\Sigma_n}(M_i\boxtimes N_j)$$

Let FI be category of finite sets with injections as morphisms. **FI-module** (introduced by Church–Ellenberg–Farb) is a functor $FI \rightarrow Vec$. Under Schur–Weyl duality, an FI-module becomes a module over $Sym(\mathbb{C}\langle 1 \rangle)$.

Example:

- Let X be a smooth manifold. Let $X^{(n)}$ be configuration space of n ordered points on X. For fixed i, $(H^i(X^{(n)}))$ is an FI-module (induced by forgetful maps). (It is f.g. if X is connected, oriented, dim at least 2 by Church)
- Fix $g \ge 2$. $\mathcal{M}_{g,n}$ = Deligne–Mumford moduli of genus g curves with n marked points. Then $\mathrm{H}^i(\mathcal{M}_{g,n})$ is an FI-module. (This is f.g. by Jimenez Rolland)
 - 5. Another motivation: Segre embeddings

$$\mathbf{P}(V_1) \times \cdots \times \mathbf{P}(V_r) \subset \mathbf{P}(V_1 \otimes \cdots \otimes V_r)$$

Want to understand Tor as $\dim(V_i)$ vary and as r varies tca's not suitable to allow r to vary

Snowden introduced Δ -modules. Roughly this is a sequence of Σ_n -equivariant functors $\mathscr{F}_n \colon Vec^{\times n} \to Vec$ with maps

$$\mathscr{F}_n(V_1,\ldots,V_{n-1},V_n\otimes V_{n+1})\to \mathscr{F}_{n+1}(V_1,\ldots,V_n,V_{n+1}).$$

For fixed i, $\{V_1, ..., V_n \mapsto \operatorname{Tor}_i^A(Segre, \mathbf{k}) \text{ is a finitely generated } \Delta\text{-module.}$

For fixed \mathscr{F} and $d \gg 0$, $(\mathbf{C}^d \mapsto \mathscr{F}_n(\mathbf{C}^d, \dots, \mathbf{C}^d))_n$ is a sequence of Σ_n -reps. Under Schur-Weyl duality, get object of Pol. It is a f.g. module over a bounded tca, and was used to prove "rationality" of Hilbert series.